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An experiment

A fair coin

Ticket worth 1e if tails, zero else

Put a price on that Ticket. I can sell it or buy it.
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Precise probabilities

Plan

1 Precise probabilities

2 Motivation for Imprecise probabilities (IP)

3 Lower previsions and imprecise probabilities

4 Conditioning in (imprecise) probability
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Precise probabilities

Objectives

Basic of probabilities

Interpretations of probabilities

Geometric and constraint representations
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Precise probabilities

Probabilities: an example

Ω = {C,P,T}:how did I come here?

Car (C) Plane (P) Train (T)

p(C) = 0.2, p(P) = 0.5, p(T ) = 0.3

No car= {P,T} = {P} ∪ {T}

P({P,T}) = P({P}) + P({T}) = p(P) + p(T ) = 0.8
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Precise probabilities

Probabilities: example

Ω = {R,P,D}:recognizing between

Renegade (R) Provocateur (P) Damaged (D)

p(R) = 0.2, p(P) = 0.5, p(D) = 0.3

No danger= {P,D} = {P} ∪ {D}

P({P,D}) = P({P}) + P({D}) = p(P) + p(D) = 0.8
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Precise probabilities

Probabilities: basic definitions

Finite possibility space Ω

Probability mass p : Ω→ [0,1] such that

p(ω) > 0,
∑

ω∈Ω p(ω) = 1

Probability of an event A ⊆ Ω

P(A) =
∑
ω∈A

p(ω)
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Precise probabilities

Expectation

X: monetary cost of a trip using ω

X (C) = 200, X (P) = 300, X (T ) = 150

expected cost of my trip

E(X ) = 0.2 · 200 + 0.5 · 300 + 0.3 · 150 = 235

X: cost of non-intervention if ω is true and we let it go

X (R) = 500, X (P) = 20, X (D) = 100

expected cost

E(X ) = 0.2 · 500 + 0.5 · 20 + 0.3 · 100 = 140
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Precise probabilities

Expectation: definition

X : Ω→ R function or real-valued random variable

p probability mass

Expectation E(X ) is the operator

E(X ) =
∑
ω∈Ω

p(ω)X (ω)
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Precise probabilities

Expectation: matrix multiplication form

500 20 100

 

0.2

0.5

0.3





140

 

50
0×

0.2

20
×

0.5

10
0×

0.3

+

+
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Precise probabilities

Main interpretations

The value P(A) can be given two main interpretations:

As frequencies

As betting prices
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Precise probabilities

Frequentist probabilities

P(A) := lim
N→∞

](x ∈ A)

N
= lim

N→∞

A happens
N

Examples
game of chance (loteries, poker, roulette)

physical quantities in

engineering (component failure, product defect)
biology (patient variability)
economics , . . .

But. . .
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Precise probabilities

Frequentist probabilities: end of story?

. . . some uncertain quantity are not repeatable/not statistical quantities:

what’s the age of the king of Sweden?

what’s the distance between you and the closest wall (in cm)? Or
between this car and the next? Or the robot and the wall?

has it rained in Edinburgh yesterday?

when will YOUR phone fail? has THIS altimeter failed? is THIS
camera not operating?

⇒ can we still use probability to model these uncertainties?
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Precise probabilities

Betting interpretation

P(A): price at which you buy/sell the ticket that

worth 1 if A happens/is true

worth 0 if A does not happen/is false

P(A) reflects your uncertainty about A

P(A) = 1 if A certain

P(A) = 0 if A impossible

The closest P(A) is to 1 (0), the more certain you are that A is or
will be true (false)
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Precise probabilities

Combining bets: additivity

If I am willing to sell you a ticket for A, Ac , then your gain is

(IA − P(A)) + (IAc − P(Ac)) = 1︸︷︷︸
You win

− (P(A) + P(Ac))︸ ︷︷ ︸
You pay

with IA indicator function of A (IA(ω) = 1 if ω ∈ A, 0 else).
if P(A) + P(Ac) > 1, you always lose money

⇒ you will not buy it

if P(A) + P(Ac) < 1, I always lose money

⇒ I will not sell it

if we are rational, we will settle prices such that P(A) + P(Ac) = 1
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Precise probabilities

Generic combination

You can:
combine any bets, i.e., chose from A1, . . . ,An

scale them, i.e., buy/sell a number ci ∈ R of tickets
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Precise probabilities

Are they rational prices?

Assume the following bets:

P({C}) = 0.5, P({C,P}) = 0.3

Assume the following bets:

P({C,P}) = 0.5, P({P,T}) = 0.6, P({C,T}) = 0.7

Assume the following bets:

P({C,P}) = 0.5, P({P,T}) = 0.5
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Precise probabilities

Generic event characterization

If P(Ai), i = 1, . . . ,n collection of assessments, they Avoid sure loss if

sup
ω∈Ω

n∑
i=1

ci [IAi (ω)− P(Ai)] ≥ 0

with ci ∈ R numbers of bought/sold tickets.
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Precise probabilities

Representation theorem

Assessments P(Ai) are coherent iff there is a p s.t.

P(Ai) =
∑
x∈Ai

p(x)

↪→ any probability p can be obtained by bets on events, but this will not
be true when going imprecise
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Precise probabilities

X (ω): reward if ω true

X (C) = 200, X (P) = 300, X (T ) = 150

What would be the price (for selling/buying) P(X ) of that ticket?

I would not sell at any price lower than 150 (why?)

You would not buy at any price higher than 300 (why?)
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Precise probabilities

Are they rational prices?

Assume the following bets:

X1(C) = 1, X1(P) = −1, X1(T ) = 0, P(X1) = 0
X2(C) = 0, X2(P) = 1, X2(T ) = −1, P(X2) = 0
X3(C) = 1, X3(P) = −1, X3(T ) = 1, P(X3) = 0

Assume the following bets:

X1(C) = 2, X1(P) = −1, X1(T ) = 0, P(X1) = 1
X2(C) = 1, X2(P) = 1, X2(T ) = −1, P(X2) = 0
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Precise probabilities

Generic function characterization

P(X )= price of ticket that gives X (ω) if ω true

If P(Xi), i = 1, . . . ,n collection of assessments, they Avoid sure loss iff

sup
ω∈Ω

n∑
i=1

ci [Xi(ω)− P(Xi)] ≥ 0

with ci ∈ R numbers of bought/sold tickets.
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Precise probabilities

Representation theorem

Assessments P(Xi) are coherent iff there is a p s.t.

P(Xi) = E(Xi) =
∑
ω∈Ω

Xi(ω)p(ω)

that is, if they can be associated to an expectation operator
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Precise probabilities

Probability as a point in the space

Probability mass= a |Ω| dimensional vector

p := (p(ω1), . . . ,p(ω|Ω|))

Limited to the set P of all probabilities

p(ω) > 0,
∑
ω∈Ω

p(ω) = 1 and

The set P is the (n − 1)-unit simplex.

One price P(X ) gives a constraint of the type∑
ω∈Ω

X (ω)p(ω)
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Precise probabilities

Point in |Ω| space

p(R) = 0.2, p(P) = 0.5, p(D) = 0.3

p(D)

p(R)

p(P)

1
1

1

p(P)

p(D) p(R)
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Precise probabilities

Point in |Ω| space

p(R) = 0.2, p(P) = 0.5, p(D) = 0.3

p(D)

p(R)

p(P)

1
1

1

p(P)

p(D) p(R)

∝ p(R)

∝
p

(P
)

∝
p(D

)
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Precise probabilities

Assessments as constraints

p(R) = 0.2, p(P) = 0.5

⇓
1 · p(R) + 0 · p(D) + 0 · p(P) = 0.2
0 · p(R) + 0 · p(D) + 1 · p(P) = 0.5

p(D)

p(R)

p(P)

1
1

1

p(P)

p(D) p(R)
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Precise probabilities

Assessments as constraints

p(R) = 0.2, p(P) = 0.5

⇓
1 · p(R) + 0 · p(D) + 0 · p(P) = 0.2
0 · p(R) + 0 · p(D) + 1 · p(P) = 0.5

p(D)

p(R)

p(P)

1
1

1

p(P)
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Precise probabilities

Other kinds of constraints

p(R)/p(P) = 0.2/0.5 = 0.4, p(D)/p(P) = 0.3/0.5 = 0.6

⇓

1 · p(R)− 0.4 · p(P) + 0 · p(D) = 0
0 · p(R)− 0.6 · p(P) + 1 · p(D) = 0

p(P)

p(D) p(R)
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Precise probabilities

Other kinds of constraints
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Precise probabilities

Expectation as constraint

1 · p(R)− 0.4 · p(P) + 0 · p(D) = 0

X= 1 −0.4 0

 

p(R)

p(P)

p(D)





0

( )

p(
R)
×

1
p(

P)
×
−0
.4

p(
D)
×

0

+

+
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Precise probabilities

exercise

Form groups of 2/3 students, each person assessing separately
price(s) for one (or two) different gamble among the three following
ones that give 1 if events/assertions are true: Montpellier
agglomeration (city + neighbouring villages) counts between

300K and 400K inhabitants

400K and 500K inhabitants

500K and 600K inhabitants
Compare your assessments. Discuss how you did to reach such
prices? Are they rational? Can you agree on rational prices?
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Precise probabilities

exercise

Represent the assessments
X1(C) = 1, X1(P) = −1, X1(T ) = 0, P(X1) = 0

X2(C) = 0, X2(P) = 1, X2(T ) = −1, P(X2) = 0

X3(C) = 1, X3(P) = −1, X3(T ) = 1, P(X3) = 0
and

X1(C) = 2, X1(P) = −1, X1(T ) = 0, P(X1) = 1

X2(C) = 1, X2(P) = 1, X2(T ) = −1, P(X2) = 0
In a geometric way, and check in this way that they are rational or not
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Precise probabilities

Summary

Two main interpretations

frequentist: applies to repeatable events
betting prices: applies to any uncertainty

For the latter, a single price→ buying=selling

One price for a gamble X = one (linear) equality constraint on
probability masses
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Motivation for Imprecise probabilities (IP)

Plan

1 Precise probabilities

2 Motivation for Imprecise probabilities (IP)

3 Lower previsions and imprecise probabilities

4 Conditioning in (imprecise) probability
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Motivation for Imprecise probabilities (IP)

Objectives

Motivate IP through examples
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Motivation for Imprecise probabilities (IP)

Not ignorance, yet. . .

Consider dice with six faces Ω = {1, . . . ,6}

You know (after 1000s of tests) that

P({1,6}) = P({2,5}) = P({3,4}) = 1/3

What is the probability

of drawing an odd number?
of scoring less or equal than 3?
of scoring less than 5?
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Motivation for Imprecise probabilities (IP)

What is the more probable?

Spain will win 2022 world cup vs Brazil will win 2022 world cup

We will be short of Oil first vs We will be short of drinkable water
first

In the next hour, average Wind power generation in Ireland will be
above 100 MW vs below 100MW
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Motivation for Imprecise probabilities (IP)

Selling/buying prices

Ticket that pays 1 if the following events are true.
1 Mexico became independent in 1820

2 Mexico became independent between 1820 and 1830

3 Mexico became independent in the 19th century

4 Mexico became independent after 1500

till what price would you be willing to buy each ticket?

if you were to sell the ticket, what would you be your lowest price?
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Motivation for Imprecise probabilities (IP)

Classification problem
X1

X2

D D

D D
D

R

R
R

R

R

P

P

P

PP

P

R

?

Ambiguity
P(P|?) ∈ [0.49,0.51]
P(R|?) ∈ [0.49,0.51]

P(D|?) ∈ [0,0.02]

X1

X2

D D

D D
D

R

R
R

R

R

P

P

P

PP

P

R

?

Lack of information
P(P|?) ∈ [0.2,0.8]
P(R|?) ∈ [0.2,0.8]
P(D|?) ∈ [0,0.6]

⇒ difference immediate with imprecise probabilities
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Motivation for Imprecise probabilities (IP)

Applications

Situations that can happen in. . .
Usual classification

Environmental analysis

Medical diagnosis

Gesture recognition

Sequence labelling

. . .
⇒ (machine) learning problems where knowing that we do not know is
useful
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Motivation for Imprecise probabilities (IP)

Real-valued variable

What is the temperature in the room?

P([−∞,20]) = 0.2 ; P([−∞,25]) = 0.6 ; P([−∞,30]) = 0.8

0.5

1.0

5 10 15 20 25 30 35 40

Similar questions:
what is the lifetime of this new component?

what would be the core temperature in scenario B?

how many years before the species is extinct?

what will be the average sea level rise in 5 years?
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Motivation for Imprecise probabilities (IP)

Some final comments

Precise assessments on some events does not mean that the
probability will be uniquely defined

Comparing probabilities requires a lot of information

Same when providing probabilities, or unique selling/buying price,
requires a lot of information

⇒ need to relax some assumptions, or provide a more general
framework
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Lower previsions and imprecise probabilities

Plan

1 Precise probabilities

2 Motivation for Imprecise probabilities (IP)

3 Lower previsions and imprecise probabilities

4 Conditioning in (imprecise) probability
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Lower previsions and imprecise probabilities

Objectives

Explain betting interpretation extension to imprecise probabilities

Introduce avoiding sure loss and its robust interpretation

Introduce natural extension and its robust interpretaiton

Introduce coherence
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Lower previsions and imprecise probabilities

Introduction

Next we shall see which are the most important rationality criteria and
tools that allow us to work with imprecise probability models: avoiding
sure loss, natural extension and coherence (in this order).

Other issues that shall be mostly tackled in other lectures, not this one,
are:

Deciding with IP models (this afternoon and Wednesday)

Obtaining IP models from data and experts (Thursday)

Computing with IP models (mainly tomorrow morning)

E. Miranda1 and S. Destercke2 (OVIEDO/CNRS) Summer School SSIPTA 2014 43 / 112



Lower previsions and imprecise probabilities

Interpretations

We shall be consider two different interpretations of IP models:

The betting interpretation: we shall assess lower and upper
betting prices on the outcomes of the experiment.

The robust interpretation: imprecise probabilities model the lack of
information about the (true) precise model of the experiment.

As we shall see later, both interpretations are formally equivalent.
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Lower previsions and imprecise probabilities

Reminder

As before:
Ω is the (finite) possible outcome space

X : Ω→ R is a gamble or ticket with

X (ω) : reward if ω true

↪→We shall see later why working with gambles is necessary.
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Lower previsions and imprecise probabilities

Lower/upper previsions: definition

P(X ): (your) maximal acceptable buying price for X

P(X ): (your) minimum acceptable selling price for X

X(R)=500, X(P)=20, X(D)=100

till which price would you accept to buy the ticket?
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Lower previsions and imprecise probabilities

Duality of buying and selling: example

Buying the ticket for P(X ) gives a reward of
500︸︷︷︸

you win

− P(X )︸ ︷︷ ︸
you lose

if R is true

20− P(X ) if P is true

100− P(X ) if D is true
which is the same as selling −X for P(−X ) = −P(X )

−P(X )︸ ︷︷ ︸
you win

− (−500)︸ ︷︷ ︸
you lose

if R is true

−P(X )− (−20) if P is true

−P(X )− (−100) if D is true
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Lower previsions and imprecise probabilities

Duality of buying and selling

For any gamble X , we do have

P(X ) = −P(−X )

Formally, we can focus only on maximal buying prices, as any
minimum selling price on X can be turned into a buying price

↪→We can only consider buying prices from a theoretical perspective
(but selling prices may be useful, e.g., for elicitation or information
presentation)
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Lower previsions and imprecise probabilities

Lower probabilities of events

The lower probability of A, P(A)

= lower prevision P(IA) of the indicator of A.

= supremum betting rate on A.

= measure of the evidence supporting A.

= measure of the strength of our belief in A.

= 1− P(Ac) = 1− P(IAc )

E. Miranda1 and S. Destercke2 (OVIEDO/CNRS) Summer School SSIPTA 2014 49 / 112



Lower previsions and imprecise probabilities

Assessment example

X(R)=500, X(P)=20, X(D)=100

If I am certain that this is not a Provocateur (but nothing more), I
should be willing to pay (buy) at least 100 for this, as I am sure to
win at least this

However, I should be willing to accept any selling price above 500,
as I could lose that much

Hence, P(X ) = 100 and P(X ) = −P(−X ) = 500
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Lower previsions and imprecise probabilities

Are they rational buying prices?

Assume the following prices:

X1(R) = 20, X1(P) = −40, X1(D) = 60, P(X1) = 20
X2(R) = −20, X2(P) = 40, X2(D) = −60, P(X2) = −10

Assume the following prices:

X1(R) = 10, X1(P) = −20, X1(D) = 0, P(X1) = 0
X2(R) = 0, X2(P) = 10, X2(D) = 0, P(X2) = 5

Assume the following prices:

X1(R) = 0, X1(P) = 20, X1(D) = −10, P(X1) = 0
X2(R) = 20, X2(P) = 0, X2(D) = −10, P(X2) = 0
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Lower previsions and imprecise probabilities

Avoiding sure loss: general definition

Let P be a lower prevision defined on a (possibly infinite) set of
gambles K. It is said to avoid sure loss or consistent iff

sup
ω∈Ω

n∑
i=1

ci(Xi(ω)− P(Xi)) ≥ 0

for any X1, . . . ,Xn ∈ K and any ci ∈ R+.

That is, there is always a state of the world ω in which we can win
money, no matter how many (ci ) tickets Xi we buy of any gamble
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Lower previsions and imprecise probabilities

Representation theorem and robust interpretation

P(X ) as a lower bound of X (ill-known) expectation:

P(X ) ≤
∑
ω∈Ω

X (ω)p(ω)

Assessments P(X1), . . . ,P(Xn) avoids sure loss if and only if the
set

P(P) = {p ∈ P : P(Xi) ≤ E(Xi), ∀Xi ∈ K}

is not empty, with E the expectation of Xi with respect to p

Or, in other words, if there is at least one probability mass p
consistent with the assessments
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Lower previsions and imprecise probabilities

Credal set example

X1(R) = 0, X1(P) = 20, X1(D) = −10, P(X1) = 0→
0 ≤ 0p(R) + 20p(P)− 10p(D)

p(D)

p(R)

p(P)

1
1

1

p(P)

p(D) p(R)
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Lower previsions and imprecise probabilities

Credal set example

X1(R) = 0, X1(P) = 20, X1(D) = −10, P(X1) = 0→
0 ≤ 0p(R) + 20p(P)− 10p(D)

1. Line obtained by equality 0 = 20p(P)− 10p(D) or 2p(P) = p(D)

p(D)

p(R)

p(P)

1
1

1

p(P)

p(D) p(R)
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Lower previsions and imprecise probabilities

Credal set example

X1(R) = 0, X1(P) = 20, X1(D) = −10, P(X1) = 0→
0 ≤ 0p(R) + 20p(P)− 10p(D)

1. Line obtained by equality 0 = 20p(P)− 10p(D) or 2p(P) = p(D)
2. Take side such that 0 ≤ 20p(P)− 10p(D) or p(D) ≤ 2p(P)

p(D)

p(R)

p(P)

1
1

1

p(P)

p(D) p(R)
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Lower previsions and imprecise probabilities

Credal set example

X1(R) = 0, X1(P) = 20, X1(D) = −10, P(X1) = 0
X2(R) = 20, X2(P) = −10, X2(D) = −10, P(X2) = 0

P(P)

p(D)

p(R)

p(P)

1
1

1

p(P)

p(D) p(R)
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Lower previsions and imprecise probabilities

Another example

0.2 ≤ p(R) ≤ 0.4, 0.3 ≤ p(P) ≤ 0.7

p(D)

p(R)

p(P)

1
1

1

p(P)

p(D) p(R)
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Lower previsions and imprecise probabilities

Alternative representation: extreme points

We can also see P(P) as a convex set of probability masses.
Each p ∈ P(P) a |Ω|-vector, and p∗ is an extreme point of P(P) iff

6 ∃p1,p2 ∈ P(P) and λ ∈ (0,1) with p∗ = λp1 + (1− λ)p2

⇒ cannot be expressed as convex comb. of two other points.

↪→ P(P) entirely characterized by its set E(P) of extreme points.
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Lower previsions and imprecise probabilities

Extreme points

p(R) = 1,p(D) = 0,p(P) = 0

p(R) = 0,p(D) = 0,p(P) = 1

p(R) = 0.25,p(D) = 0.5,p(P) = 0.25

p(P)

p(D) p(R)
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Lower previsions and imprecise probabilities

Exercise

Consider an urn with 10 balls, of which 3 are red, and the other 7 are
either blue or yellow. We select one ball at random.

(a) Determine the set P of probabilities that represent the possible
compositions of the urn.

(b) Which are the extreme points of this set?

(c) What are the lower and upper probabilities that the ball selected is
blue?
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Lower previsions and imprecise probabilities

Going beyond probabilities: an example

Before jumping off the wall, Humpty Dumpty tells Alice the following:

“I have a farm with pigs, cows and hens. There are at least as
many pigs as cows and hens together, and at least as many
hens as cows. How many pigs, cows and hens do I have?”

Which are the set of probabilities compatible with this information?

Can we express them by using lower and upper probabilities of
events?
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Lower previsions and imprecise probabilities

Exercise

John is planning to bet on the winner of the Formula 1 championship.
Determine the set of probabilities compatible with his beliefs, if he
thinks that:

Only one of Rosberg, Hamilton, Alonso or Vettel can win.

The probability of Hamilton winning is at least twice as much of
that of Alonso winning, and this is at least 1.5 times the probability
of Vettel winning.

Rosberg has exactly the same probability of winning than
Hamilton.
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Lower previsions and imprecise probabilities

Inference: natural extension

Consider the following gambles:

X1(a) = 5,X1(b) = 2,X1(c) = −5,X1(d) = −10
X2(a) = 2,X2(b) = −2,X2(c) = 0,X2(d) = 5

and assume we make the assessments P(X1) = 2,P(X2) = 0, that
avoid sure loss. Can we deduce anything about how much should we
pay for the gamble

Y (a) = 7,Y (b) = 4,Y (c) = −5,Y (d) = 0?

For instance, since Y ≥ X1 + X2, we should be disposed to pay at least
P(X1) + P(X2) = 2. But can we be more specific?
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Lower previsions and imprecise probabilities

Definition

Consider a lower prevision P with domain K, we seek to determine the
consequences of the assessments in K on gambles outside the
domain.

The natural extension of P to all gambles is given by

E(Y ) := sup{µ :∃Xi ∈ K, ci ≥ 0, i = 1, . . . ,n :

Y − µ ≥
n∑

i=1

ci(Xi(ω)− P(Xi))}

E(Y ) is the supremum acceptable buying price for Y that can derived
from the assessments on the gambles in the domain.

↪→ If P does not avoid sure loss, then E(Y ) = +∞ for any gamble f .

E. Miranda1 and S. Destercke2 (OVIEDO/CNRS) Summer School SSIPTA 2014 63 / 112



Lower previsions and imprecise probabilities

Example

Applying this definition, we obtain that E(Y ) = 3.4, by considering

Y − 3.4 ≥ 1.2(X1 − P(X1)).

Hence, the assessments P(X1) = 2, P(X2) = 0 imply that we should
pay at least 3.4 for the gamble Y , but not more.
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Lower previsions and imprecise probabilities

Natural extension: robustness interpretation

If assessments P(Xi) in K avoid sure loss , then the natural extension
coincides with

E(Y ) = inf
p∈P(P)

E(Y )

the lower expectation of Y taken over every p ∈ P(P)

Thus, we can give the natural extension with a robust
interpretation.
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Lower previsions and imprecise probabilities

Computing natural extension: basic methods

1 solve the linear program

E(Y ) := sup{µ :∃Xi ∈ K, ci ≥ 0, i = 1, . . . ,n :

Y − µ ≥
n∑

i=1

ci(Xi(ω)− P(Xi))}

2 solve the linear program

E(Y ) = inf{
∑
ω∈Ω

Y (ω)p(ω) :
∑

p(ω) = 1,p(ω) ≥ 0,

P(Xi) ≤
∑
ω∈Ω

Xi(ω)p(ω) ≤ P(Xi)}

3 If you have extreme points E(P)

E(Y ) = min
p∈E(P)

E(Y ).

↪→ For the upper expectation, replace min/inf by max/sup.
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Lower previsions and imprecise probabilities

Example

p(R) = 1,p(D) = 0,p(P) = 0

p(R) = 0,p(D) = 0,p(P) = 1

p(R) = 0.25,p(D) = 0.5,p(P) = 0.25

p(P)

p(D) p(R)

What is the natural extension of the following gamble:

Y (R) = 200,Y (D) = −100 ,Y (P) = 500

(say you are a non-benefit organization fundraiser)
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Lower previsions and imprecise probabilities

Lower expectation / natural extension: matrix

200 −100 500




1 0 0.25

0 0 0.5

0 1 0.25





200 500 125

 

20
0×

1

−1
00
×

0
50

0×
0

+

+

Min
125X=

E(P)
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Lower previsions and imprecise probabilities

Exercise

Consider again the urn with 10 balls, of which 3 are red, and the other
7 are either blue or yellow. We select one ball at random.

(d) Assume I offer you the following gamble:

lose 100 if you draw a red
win 300 if you draw a yellow
win 50 if you draw a blue

Given what you know about the urn, what would be your maximal
buying price? your minimum selling?
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Lower previsions and imprecise probabilities

Exercise

Consider Ω = {1,2,3}, and the gambles and lower previsions given by

X1(1) = 1, X1(2) = 2, X1(3) = 3
X2(1) = 3, X2(2) = 2, X2(3) = 1

Assume we make the assessments P(X1) = 2 = P(X2).
(a) Do these assessments avoid sure loss?

(b) Compute their natural extension on the gamble Y given by
Y (1) = 0,Y (2) = 1 = Y (3).
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Lower previsions and imprecise probabilities

Going beyond probabilities: an example

Before going away, Humpty Dumpty tells Alice the following:

“I see you have some money with you. If you give me a coin,
we will wait till an animal come out of the barn, and:

I will give you 1 if a pig comes out
I will give you 4 if a hen comes out
you will give me 1 if a cow comes out

” Will Alice accept the gamble? Would she have accepted if
she retained only the lower/upper probabilities?
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Lower previsions and imprecise probabilities

Exercise

Let PA be the vacuous lower prevision relative to a set A, given by the
assessment PA(A) = 1.

Prove that the natural extension E of PA is equal to the vacuous lower
prevision relative to A:

E(X ) = PA(X ) = inf
ω∈A

X (ω),

for any X ∈ L(Ω).
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Lower previsions and imprecise probabilities

Exercise

John is planning to bet on the winner of the Formula 1 championship.
Recall that he thnks that

Only one of Rosberg, Hamilton, Alonso or Vettel can win.

The probability of Hamilton winning is at least twice as much of
that of Alonso winning, and this is at least 1.5 times the probability
of Vettel winning.

Rosberg has exactly the same probability of winning than
Hamilton.

On his favourite betting website, they offer him a bet with reward 10 if
Alonso wins, 5 if Vettel wins, and -3 if either Rosberg or Hamilton win.
According to his beliefs, which are the minimum and maximum
expected gains? Should he accept this bet or not?
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Lower previsions and imprecise probabilities

Natural extension and coherence

We say that a lower prevision P with domain K is coherent when it
coincides with its natural extension E on K.

If P avoids sure loss, then E is the smallest coherent lower prevision
on L(Ω), the set of all possible gambles, that dominates P on K.

Because of this, the natural extension can be regarded as the
least-committal extension of P: other coherent extensions will reflect
stronger assessments than those present in P.
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Lower previsions and imprecise probabilities

Coherence: general definition

We can also check coherence directly, without computing the natural
extension.

A lower prevision P is called coherent when given gambles
X0,X1, . . . ,Xn in its domain and m ∈ N,

sup
ω∈Ω

[
n∑

i=1

[Xi(ω)− P(Xi)]−m[X0(ω)− P(X0)]] ≥ 0.

Otherwise, there is some ε > 0 and ω such that

n∑
i=1

Xi(ω)− (P(Xi)− ε) < m(X0(ω)− P(X0)− ε),

and P(X0) + ε would be an acceptable buying price for X0.
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Lower previsions and imprecise probabilities

Robust interpretation

The assessments

P(X ) ≤ E(X ) ≤ P(X ) ∀X ∈ K

are coherent to iff, for any X ∈ K, we have

E(X ) = P(X )

E(X ) = P(X )

In other words, they are best-possible bounds, and coincide with the
lower envelope of P(P)
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Lower previsions and imprecise probabilities

Example

Consider the previously given assessments
X1(R) = 0, X1(P) = 20, X1(D) = −10, P(X1) = 0

X2(R) = 20, X2(P) = 0, X2(D) = −10, P(X2) = 0
and the new assessment on

X3(R) = 200,X3(P) = 100,X3(D) = 40

Given buying price is P(X3) = 72.

Are P(X1),P(X2),P(X3) coherent?
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Lower previsions and imprecise probabilities

Example

p(P)

p(D) p(R)

A new assessment on

X3(P) = 100,X3(D) = 40,X3(R) = 200

Given buying price is P(X ) = 72

Are P(X1),P(X2),P(X3) coherent?
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Lower previsions and imprecise probabilities

Example

p(P)

p(D) p(R)

A new assessment on

X3(P) = 100,X3(D) = 40,X3(R) = 200

Given buying price is P(X ) = 72

Are P(X1),P(X2),P(X3) coherent?
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Lower previsions and imprecise probabilities

Example

p(P)

p(D) p(R)

A new assessment on

X3(P) = 100,X3(D) = 40,X3(R) = 200

Given buying price is P(X ) = 72

Are P(X1),P(X2),P(X3) coherent?
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Lower previsions and imprecise probabilities

Lower expectation / natural extension: matrix

100 40 200

 

1 0 0.25

0 0 0.5

0 1 0.25





100 200 95

 

10
0×

1
40
×

0
20

0×
0

+

+

Min
95X=

P(X3) does not coincide with its natural extension E(X3)!
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Lower previsions and imprecise probabilities

Example

(corrected) assessments
X1(R) = 0, X1(P) = 20, X1(D) = −10, P(X1) = 0

X2(R) = 20, X2(P) = 0, X2(D) = −10, P(X2) = 0

X3(R) = 200,X3(P) = 100,X3(D) = 40,P(X3) = 95
are coherent!

p(P)

p(D) p(R)
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Lower previsions and imprecise probabilities

Exercise

Consider the lower prevision given by:

X (a) X (b) X (c) P(X )

X1 2 1 0 0.5
X2 0 1 2 1
X3 0 1 0 1

(a) Does it avoid sure loss?

(b) Is it coherent?
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Lower previsions and imprecise probabilities

Exercise

Mr. Play-it-safe is planning his upcoming holidays in the Canary
Islands, and he is taking into account three possible disruptions: an
unexpected illness (A), severe weather problems (B) and the
unannounced visit of his mother in law (C).
He has assessed his lower and upper probabilities for these events:

A B C D
P 0.05 0.05 0.2 0.5
P 0.2 0.1 0.5 0.8

where D denotes the event ‘Nothing bad happens’. He also assumes
that no two disruptions can happen simultaneously.

(a) Determine the set of probabilities compatible with the
assessments above.

(b) Are these lower probabilities coherent? If not, compute their
natural extension.
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Lower previsions and imprecise probabilities

Exercise

Consider the assessments
X1(R) = 0, X1(P) = 20, X1(D) = −10, P(X1) = 0

X2(R) = 20, X2(P) = 0, X2(D) = −10, P(X2) = 0

X3(R) = 200,X3(P) = 100,X3(D) = 40,P(X3) = 120
Answer these questions (in the order you deem fit)?

1 Do they avoid sure loss?

2 If yes, what are the extreme points of the associated probability
set?

3 If yes to 1, Are they coherent?

4 If not to 3, which assessment(s) can be corrected?
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Lower previsions and imprecise probabilities

Exercise

Let A be a non-empty subset of a (not necessarily finite) set Ω. Say we
only know that the lower probability of A is equal to 1. This assessment
is embodied through the lower prevision P defined on the singleton
{IA} by P(A) = 1. We extend it to all gambles by P(X ) = infω∈A X (ω).

(a) Show that P avoids sure loss.

(b) Show that P is coherent.
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Lower previsions and imprecise probabilities

Coherence on linear spaces

Suppose the domain K is a linear space of gambles:
If X ,Y ∈ K, then X + Y ∈ K.

If X ∈ K, λ ∈ R, then λX ∈ K.

Then, P is coherent if and only if for any X ,Y ∈ K, λ ≥ 0,
P(X ) ≥ inf X .

P(λX ) = λP(X ).

P(X + Y ) ≥ P(X ) + P(Y ).
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Lower previsions and imprecise probabilities

Exercise

Let P be the lower prevision on L({1,2,3}) given by

P(X ) =
min{X (1),X (2),X (3)}

2
+

max{X (1),X (2),X (3)}
2

.

Is it coherent?
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Lower previsions and imprecise probabilities

Exercise

Let P be a coherent lower prevision on L(Ω), where Ω = {0,1}.

Prove that P is a linear-vacuous mixture, i.e., that there is some
α ∈ [0,1] and a linear prevision P on Ω such that

P = αP + (1− α)PΩ.
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Lower previsions and imprecise probabilities

Example: non-additive measures

As particular cases of coherent lower or upper probabilities, we have
most of the models of non-additive measures existing in the literature.
Let µ : P(Ω)→ [0,1]. It is called a capacity or non-additive measure
when it satisfies:

1 µ(∅) = 0, µ(Ω) = 1 (normalisation).

2 A ⊆ B ⇒ µ(A) ≤ µ(B) (monotonicity).

Non-additive measures are used as alternative models to probability
where we do not require the additivity axiom. We shall see more on
fuzzy measures on Thursday.
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Lower previsions and imprecise probabilities

Does the interpretation matter?

When we consider the credal set compatible with P we are giving a
robust interpretation to our IP model:

P describes an ill-known probability

P(P) is the set of possible probabilities

Should we know more, then we could identify the "true" probability
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Lower previsions and imprecise probabilities

Always a unique probability?

Examples possibly fitting this interpretation
Untested flipping coin

Partially known dice example

The Classification examples (to some extent)

But what about
The temperature in this room ?

The number of French people (i.e., having a french ID
card/passport) today?

For those cases, it makes (more) sense to consider the behavioural
interpretation of IP models (that also holds for other cases).
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Lower previsions and imprecise probabilities

Coherent lower previsions: challenges

Extension of the theory to unbounded gambles ↪→ M. Troffaes, G.
de Cooman.

The notion of coherence may be too weak.

We are assuming that the utility scale is linear, which may not be
reasonable in practice ↪→ R. Pelessoni, P. Vicig.
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Lower previsions and imprecise probabilities

Lower prevision: summary and links

Avoiding sure loss Natural extension Coherence

supω∈Ω

∑n
i=1 ci E(Y ) := sup{µ : supω∈Ω

Behaviour. (Xi(ω)− P(Xi)) ≥ 0 ∃Xi ∈ K, ci ≥ 0, [
∑n

i=1[Xi(ω)− P(Xi)]
i = 1, . . . , n : Y − µ ≥ −m[X0(ω)− P(X0)]]∑n

i=1 ci(Xi(ω)− P(Xi))} ≥ 0

Robust P(P) 6= ∅ E(Y ) = infp∈P(P) E(Y ) P(Xi) = E(Xi)

Optim. Feasible Solving Tight constraints

Logic Consistent Deduction Deductively closed
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Lower previsions and imprecise probabilities

Related works

B. de Finetti.

P. Williams.

V. Kuznetsov.

K. Weichselberger.

G. Shafer and V. Vovk.
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Lower previsions and imprecise probabilities

References: coherent lower previsions

The results and definitions from this part can be found in chapter 3
from:

P. Walley, Statistical reasoning with imprecise probabilities.
Chapman and Hall, 1991.

Additional references:

T. Augustin, F. Coolen, M. Troffaes and G. de Cooman (eds.),
Introduction to imprecise probabilities. Wiley, 2014.

M. Troffaes and G. de Cooman, Lower previsions. Wiley, 2014.

E. Miranda, A survey of the theory of coherent lower previsions.
Int. J. of App. Reasoning, 48(2):628–658, 2008.
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Lower previsions and imprecise probabilities

References on related works

B. de Finetti, Theory of Probability. Wiley, 1974.

V. Kuznetsov, Interval Statistical models. Radio and
communication, 1991 (in Russian).

K. Weischelberger, Elementare Grundbegriffe einer allgemeineren
Wahrscheinlichkeitsrechnung I: Intervallwahrscheinlichkeit als
umfassendes Konzept, Physica, Heidelberg, 2001.

G. Shafer and V. Vovk, Probability and finance: it’s only a game!.
Wiley and Sons, 2001.

P. Williams, Notes on conditional previsions. Technical Report,
Univ. of Sussex, 1975.
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Conditioning in (imprecise) probability

Plan

1 Precise probabilities

2 Motivation for Imprecise probabilities (IP)

3 Lower previsions and imprecise probabilities

4 Conditioning in (imprecise) probability
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Conditioning in (imprecise) probability

Conditioning and conditionals

The conditional probability P(A|B) can be defined
From initial P by

P(A|B) =
P(A ∩ B)

P(B)

Or by starting from the conditional value P(A|B) and stating the
relation

P(A|B)P(B) = P(A ∩ B)

N.B.: the latter do not prevent P(B) = 0, the former do! (more than a
simple rewriting)

However, for simplicity, we assume P(B) > 0 in this talk.
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Conditioning in (imprecise) probability

Conditional expectations

From the conditional probability p(·|B), we can also define a
conditional expectation functional: for any gamble X ∈ L(Ω), we have

P(X |B) =
P(BX )

P(B)
,

where P(BX ) denotes the expectation of the function XIB with respect
to P. We can equivalently express the equation above as
P(B(X − P(X |B))) = 0.

In our language, this conditional expectation will be called a conditional
lower prevision. Next, we study the analogous concept in an imprecise
context.
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Conditioning in (imprecise) probability

Example

p(R) = 0.2, p(P) = 0.5, p(D) = 0.3

We learn/observe B = {P,R}.

Compute p(R|B),p(P|B).

Compute p(X |B), where X is the gamble given by
X (P) = 2,X (R) = −2.
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The updated and the contingent interpretation

Consider a subset B of Ω, and a gamble X on Ω.

Under the contingent interpretation, P(X |B) is the supremum value of
µ such that the gamble IB(X − µ) is desirable for our subject.

We can also consider the updated interpretation, where P(X |B) is his
supremum acceptable buying price for X , provided he later observes
that the outcome of the experiment belongs to B.
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Reconciling the two interpretations

Walley considers the updating principle: he calls a gamble X
B-desirable when it is desirable provided the outcome of the
experiment belongs to B.

The principle says that X is B-desirable if and only if IBX is desirable.

This relates present and future dispositions for the subject.
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Conditional lower previsions

If we consider a partition B of Ω, we define P(X |B) as the gamble that
takes the value P(X |B) on the elements of B. It is called a conditional
lower prevision.

We shall always require that P(·|B) is separately coherent, meaning
that:

For every B ∈ B, the mapping P(·|B) : L(Ω)→ R is a coherent
lower prevision.

P(B|B) = 1 for every B ∈ B.

However, we need a tool to relate conditional and unconditional lower
previsions.
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Generalised Bayes Rule

Given a coherent lower prevision P on L(Ω) and a partition B of Ω, our
goal is to derive a conditional lower prevision P(·|B) from P.

We say that P,P(·|B) satisfy the Generalised Bayes Rule (GBR) when

P(B(X − P(X |B))) = 0 ∀X ∈ L(Ω),∀B ∈ B.

This means that if we interpret P(X |B) as the supremum buying price
for X given B, we cannot combine it with those in P and get a sure loss.

E. Miranda1 and S. Destercke2 (OVIEDO/CNRS) Summer School SSIPTA 2014 103 / 112



Conditioning in (imprecise) probability

Equivalent formulation

When P(B) > 0, there is only one value of P(X |B) satisfying (GBR)
with P:

P(X |B) = inf{P(X |B) : P ≥ P}.

Thus, P(·|B) is the lower envelope of the set of conditional previsions
determined applying Bayes’ rule on the elements of P(P).

Moreover, if P(P) has a finite number of extreme points, these can be
used to determine the conditional lower prevision.
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A robust interpretation

Consider a coherent lower prevision P on L(Ω), let B be a finite
partition of Ω such that P(B) > 0 for every B ∈ B and define P(·|B) by
means of (GBR).

Then P,P(·|B) can be obtained as the lower envelopes of the set

{P,P(·|B) : P ≥ P,P(·|B) derived from P by Bayes’ rule}.

Thus, the robust interpretation of coherent lower previsions carries on
to the conditional case under these assumptions.
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Exercise

Three horses (a,b and c) take part in a race. Our a priori lower
probability for each horse being the winner is

P({a}) = 0.1, P({b}) = 0.25, P({c}) = 0.3,
P({a,b}) = 0.4, P({a, c}) = 0.6, P({b, c}) = 0.7.

There are rumors that c is not going to take part in the race due to
some injury. What are the updated lower probabilities for a,b?
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Exercise: the three prisoners problem

Three women, a, b and c, are in jail. Prisoner a knows that only two of
the three prisoners will be executed, but she doesn’t know who will be
spared. She only knows that all three prisoners have equal probability
1
3 of being spared.

To the warden who knows which prisoner will be spared, a says, “Since
two out of the three will be executed, it is certain that either b or c will
be. You will give me no information about my own chances if you give
me the name of one man, b or c, who is going to be executed.”
Accepting this argument after some thinking, the warden says,
“Prisoner b will be executed.”

Does the warden’s statement truly provide no information about the
chance of a to be executed?
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But things can get complicated!

The above procedure works if we consider a finite partition of the
possibility space, and all the conditioning events have positive lower
probability. But there are more general (and complicated) situations:

Conditioning on sets of lower probability zero.

Considering a partition with an infinite number of elements.

Considering more than one partition.
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Conditioning on sets of lower probability zero

If P(B) = 0, there is more than one value of P(X |B) satisfying (GBR)
with P, so coherence is not enough. We can then consider:

Regular extension: P(X |B) = inf{P(X |B) : P ≥ P,P(B) > 0}.

Natural extension: P(X |B) = infB X .

They correspond to the greatest and the smallest models satisfying
(GBR).

Other approaches: zero-layers (Coletti/Scozzafava), full
conditional measures (Dubins).
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Infinite partitions: conglomerability

If B has an infinite number of elements, Walley’s coherence of
P,P(·|B) is equivalent to:

P(B(X − P(X |B))) = 0 ∀X ,∀B ∈ B. (GBR).

P(
∑

B∈B(B(X − P(X |B)))) ≥ 0 ∀X (conglomerability).

Conglomerability involves an infinite number of transactions, unlike
what we have seen so far. If makes sense from a behavioral point of
view but has a number of undesirable mathematical properties.
Because of this, it is rejected by some authors, like de Finetti.
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Conditioning on several partitions

More generally, we may want to derive more than one conditional lower
prevision P(·|B1), . . . ,P(·|Bm) from our unconditional lower prevision
P. In that case, coherence can be extended in more than one manner:

We may require that each P(·|Bj) is consistent with P (this is
called weak coherence).

We may require in addition that the assessments
P(·|B1), . . . ,P(·|Bm) are also consistent with each other (this is
called coherence).

These two notions are not equivalent! Moreover, the verification of
coherence (which is the right notion from the behavioral point of view)
is not immediate anymore.
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