Special cases of lower previsions and their use in statistics

I. Couso D. Dubois IRIT-CNRS, Université Paul Sabatier 31062 TOULOUSE FRANCE

Outline

- 1. Set-valued representations of ignorance
- 2. Capacity-based uncertainty theories and their links to imprecise probability
- 3. Practical representations
- 4. Statistics with interval data

(From the simplest to the more complex representations of uncertainty)

Motivation for going beyond probability

- Distinguish between uncertainty due to variability from uncertainty due to lack of knowledge or missing information.
- The main tools to representing uncertainty are
 - Probability distributions : good for expressing variability, but information demanding
 - Sets: good for representing incomplete information, but often crude representation of uncertainty
- Find representations that allow for both aspects of uncertainty.

Example

- Variability: daily quantity of rain in Toulouse
 - May change every day
 - It is objective: can be estimated through statistical data
- **Incomplete information** : Birth date of Brazilian President
 - It is not a variable: it is a constant!
 - Information is subjective: Most may have a rough idea (an interval), a few know precisely, some have no idea.
 - Statistics on birth dates of other presidents do not help much.

What do set-valued data mean?

- A set can represent
 - the precise description of an actual object (ontic set) : a region in an image.
 - or incomplete information about an ill-known entity (epistemic set) : interval containing an ill-known birthdate.
- The ill-known entity can be
 - A constant (x \in E)
 - or a random variable ($P_x \in \{P: P(E) = 1\}$).

Set-Valued Representations of Partial Knowledge

- An ill-known quantity x is represented as a disjunctive set, i.e. a subset E of *mutually exclusive values*, one of which is the real one.
- Pieces of information of the form $x \in E$
 - Intervals E = [a, b]: good for representing incomplete
 <u>numerical</u> information
 - Classical Logic: good for representing incomplete symbolic (Boolean) information

 $E = Models of a wff \phi stated as true.$

This kind of information is subjective (epistemic set)

BOOLEAN POSSIBILITY THEORY

Natural set functions under incomplete information: If all we know is that $x \in E \neq \emptyset$ then

- Event A is possible if $A \cap E \neq \emptyset$ (logical consistency) <u>Possibility measure</u> $\Pi(A) = 1$, and 0 otherwise $\Pi(A \cup B) = \max(\Pi(A), \Pi(B));$
- Event A is sure if $E \subseteq A$ (logical deduction) <u>Necessity measure</u> N(A) = 1, and 0 otherwise $N(A \cap B) = min(N(A), N(B)).$

$$\begin{split} N(A) &= 1 - \Pi(A^c) : N(A) = 1 \text{ iff } \Pi(A^c) = 0\\ N(A) &\leq \Pi(A) \end{split}$$

This corresponds to a fragment of a modal logic (KD)

Representations of uncertainty due to incompleteness

- More expressive than epistemic sets (pure intervals or classical logic), and Boolean possibility theory
- Less demanding than single probability distributions
- Explicitly allows for missing information
- Allows for addressing the same problems as probability.

Possibility Theory (Shackle, 1961, Zadeh, 1978)

- A piece of incomplete information " $x \in E$ " admits of *degrees* of possibility: $E \subseteq S$ is a (normalized) fuzzy set : $\mu_E : S \rightarrow [0, 1]$
- $\mu_{E}(s) = Possibility(x = s) = \pi_{x}(s) in [0, 1]$
- $\pi_x(s)$ is the degree of plausibility of x = s
- Conventions: $\pi_x(s) = 1$ for some value s. $\pi_x(s) = 0$ iff x = s is impossible, totally surprising $\pi_x(s) = 1$ iff x = s is normal, fully plausible, unsurprising (but no certainty)

A family of nested epistemic sets

In the continuous case: $\alpha = Poss$ (x not in A_{α})

FUZZY INTERVAL

Improving expressivity of incomplete information representations

What about the birth date of the president?

- partial ignorance with ordinal preferences : May have reasons to believe that 1933 > 1932 = 1934 > 1931 = 1935 > 1930 > 1936 > 1929
- Linguistic information described by fuzzy sets:

"he is old ": membership function μ_{OLD} is interpreted as a possibility distribution on possible birth dates (Zadeh).

• Nested intervals $E_1, E_2, ... E_n$ with confidence levels

POSSIBILITY AND NECESSITY OF AN EVENT

How confident are we that $x \in A \subset S$? (*an event A occurs*) given a possibility distribution on S

•
$$\Pi(A) = \max_{s \in A} \pi(s)$$
:
to what extent A is consistent with π
(= some x $\in A$ is possible)
The degree of possibility *that* x $\in A$

•
$$N(A) = 1 - \Pi(A^c) = \min_{s \notin A} 1 - \pi(s)$$
:

to what extent no element outside A is possible

= to what extent π implies A

The degree of certainty (necessity) that $x \in A$

Basic properties (finite case)

 $\Pi(A \cup B) = \max(\Pi(A), \Pi(B));$ $N(A \cap B) = \min(N(A), N(B)).$

Mind that most of the time : $\Pi(A \cap B) < \min(\Pi(A), \Pi(B));$ $N(A \cup B) > \max(N(A), N(B))$

Example: Total ignorance on A and $B = A^c$

 $(\Pi(A) = \Pi(A^{c}) = 1)$ Corollary N(A) > 0 $\Rightarrow \Pi(A) = 1$

Comparing information states

• π' more specific than π in the wide sense if and only if $\pi' \leq \pi$

Any possible value according to π' is at least according to π : π' is more informative than π

- COMPLETE KNOWLEDGE: The most specific ones
 - $\pi(s_0) = 1$; $\pi(s) = 0$ otherwise

- IGNORANCE: $\pi(s) = 1, \forall s \in S$

• **Principle of least commitment** (minimal specificity): In a given information state, any value not proved impossible is supposed to be possible : maximise possibility degrees.

- Attaching a degree of certainty α to event A
- It means $N(A) \ge \alpha \Leftrightarrow \Pi(A^c) = \sup_{s \notin A} \pi(s) \le 1 \alpha$
- The least informative π sanctioning N(A) $\geq \alpha$ is : - $\pi(s) = 1$ if $s \in A$ and $1 - \alpha$ if $s \notin A$
- In other words: $\pi(s) = \max(\mu_A, 1 \alpha)$

At the limit with an infinity of nested intervals

 $N(A_{\alpha}) \ge 1 - \alpha, \alpha \text{ in } (0, 1]$

FUZZY INTERVAL

A pioneer of possibility theory

- In the 1950's, **G.L.S. Shackle** called "degree of potential surprize" of an event its degree of impossibility = $1 \Pi(A)$.
- Potential surprize is valued on a disbelief scale, namely a positive interval of the form [0, y*], where y* denotes the absolute rejection of the event to which it is assigned, and 0 means that nothing opposes to the occurrence of A.
- The degree of surprize of an event is the degree of surprize of its least surprizing realization.
- He introduces a notion of conditional possibility

Qualitative vs. quantitative possibility theories

- Qualitative:
 - **comparative**: A complete pre-ordering \geq_{π} on S A wellordered partition of S: E1 > E2 > ... > En
 - **absolute:** $\pi_x(s) \in L$ = finite chain, complete lattice...
- **Quantitative**: $\pi_x(s) \in [0, 1]$, integers...

One must indicate where the numbers come from.

All theories agree on the fundamental maxitivity axiom $\Pi(A \cup B) = \max(\Pi(A), \Pi(B))$ Theories diverge on the conditioning operation

Quantitative possibility theory

- Membership functions of fuzzy sets
 - Natural language descriptions pertaining to numerical universes (fuzzy numbers)
 - Results of fuzzy clustering

Semantics: metrics, proximity to prototypes

• Imprecise probability

- Random experiments with imprecise nested outcomes
- Possibility distributions encode special convex probability sets

Semantics: frequentist, or subjectivist (gambles)...

Blending intervals and probability

- Representations that refine Boolean possibility theory and account for both variability and incomplete knowledge must combine probability and sets.
 - Sets of probabilities : imprecise probability theory
 - Random(ised) sets : Dempster-Shafer theory
 - Fuzzy sets: numerical possibility theory
- Each event has a degree of belief (certainty) and a degree of plausibility, instead of a single degree of probability

GRADUAL REPRESENTATIONS OF UNCERTAINTY using capacities

Family of propositions or events *E* forming a Boolean Algebra

- S, Ø are events that are certain and ever impossible respectively.
- A confidence measure g: a function from \mathcal{E} to [0,1] such that
 - $g(\emptyset) = 0 \quad ; \quad g(S) = 1$
 - monotony : if $A \subseteq B$ (=A implies B) then $g(A) \le g(B)$
- g(A) quantifies the confidence of an agent in proposition A.
- g is a Choquet capacity

BASIC PROPERTIES OF CONFIDENCE MEASURES

- $g(A \cup B) \ge max(g(A), g(B));$
- $g(A \cap B) \leq min(g(A), g(B))$
- It includes:
 - probability measures: $P(A \cup B) = P(A) + P(B) P(A \cap B)$
 - possibility measures $\Pi(A \cup B) = \max(\Pi(A), \Pi(B))$
 - necessity measures $N(A \cap B) = min(N(A),N(B))$
- The two latter functions do not require a numerical setting

A GENERAL SETTING FOR REPRESENTING GRADED CERTAINTY AND PLAUSIBILITY

- 2 conjugate set-functions Pl and Cr generalizing probability P, possibility Π, and necessity N.
- Conventions :
 - Pl(A) = 0 "impossible"; Cr(A) = 1 "certain"
 - Pl(A) = 1; Cr(A) = 0 "ignorance" (no information)
 - Pl(A) Cr(A) quantifies ignorance about A
- Postulates
 - Cr and Pl are monotonic under inclusion (= capacities).
 - $Cr(A) \le Pl(A)$ "certain implies plausible"
 - $Pl(A) = 1 Cr(A^c)$ duality certain/plausible
 - If Pl = Cr then it is P.

Imprecise probability theory

- A state of information is represented by a family \mathcal{P} of probability distributions over a set X.
- For instance: incomplete knowledge of a frequentist probabilistic model : $\exists P \in \mathcal{P}$.
- To each event A is attached a probability interval [P_{*}(A), P^{*}(A)] such that
 - $P_*(A) = \inf\{P(A), P \in \mathcal{P}\}$
 - $P^*(A) = \sup\{P(A), P \in \mathcal{P}\} = 1 P_*(A^c)$
- Usually \mathcal{P} is strictly contained in $\{P(A), P \ge P_*\}$
- $\{P(A), P \ge P_*\}$ is convex (credal set).

WHY REPRESENTING INFORMATION BY PROBABILITY FAMILIES ?

Often probabilistic information is incomplete:

- Expert opinion (fractiles, intervals with confidence levels)
- Subjective estimates of support, mode, etc. of a distribution
- Parametric model with incomplete information on parameters (partial subjective information on mean and variance)
- Parametric model with confidence intervals on parameters due to a small number of observations

WHY REPRESENTING INFORMATION BY PROBABILITY FAMILIES ?

- In the case of generic (frequentist) information using a family of probabilistic models, rather than selecting a single one, enables to account for incompleteness and variability.
- In the case of subjective belief: distinction between
 - not believing a proposition ($P_*(A)$ and $P_*(A^c)$ low)
 - and believing its negation $(P_*(A^c) high)$.

Subjectivist view (Peter Walley)

- A theory that handles convex probability sets
 - $P_{low}(A)$ is the highest acceptable price for buying a bet on singular event A winning 1 euro if A occurs
 - $P^{high}(A) = 1 P_{low}(A^c)$ is the least acceptable price for selling this bet.
 - These prices may differ (no exchangeable bets)
- Rationality conditions:
 - No sure loss : $\{P \ge P_{low}\}$ not empty
 - **Coherence**: $P_*(A) = \inf\{P(A), P \ge P_{low}\} = P_{low}(A)$
- Convex probability sets (credal sets) are actually characterized by lower expectations of real-valued functions (gambles), not just events.

Capacity-based lower probabilities

- Coherent lower probabilities are important examples of certainty functions. The most general numerical approach to uncertainty : $Cr = P_*$
- They satisfy <u>super-additivity</u>: if $A \cap B = \emptyset$ then $P_*(A) + P_*(B) \le P_*(A \cup B)$
- One may require the <u>2-monotony property for Cr</u>: $Cr(A) + Cr(B) \le Cr(A \cup B) + Cr(A \cap B)$
 - ensures non-empty coherent credal set:

 $\mathcal{P}(\mathrm{Cr}) = \{ \mathrm{P} \colon \mathrm{P}(\mathrm{A}) \geq \mathrm{Cr}(\mathrm{A}) \} \neq \emptyset \; .$

Cr is then called a <u>convex capacity</u>.

Coherence and deductive closure

• Suppose the knowledge is of the form of a consistent set \mathcal{B} of assertions ϕ_i of the form

« x in $E_i \gg i = 1, ..., n$ (interpreted as $N(E_i) = 1$)

- The set of consequences of $B = \{\phi_i \ i = 1, ..., n\}$ is $C(\mathcal{B}) = \{\phi | \mathcal{B} | = \phi\}$ (deductively closed)
- Define a Boolean necessity function N* such that $N^*(A) = 1$ iff $\phi = \ll x$ in $A \gg$ in $C(\mathcal{B})$ iff $E = \bigcap_{i=1,...,n} E_i \subseteq A$

Coherence and deductive closure

- If the knowledge \mathcal{B} is viewed as the credal set {P: P(E_i) = 1, i = 1, ...,n} then the coherent lower probability induced by its natural extension is the Boolean necessity function N*, obtained from the deductive closure $C(\mathcal{B})$, which is another example of coherent lower probability.
- **Conclusion** Coherence generalizes deductive closure, and a consequence of B is a formula whose set of models has lower probability 1.

Random sets

- A probability distribution *m* on the family of non-empty subsets of a set S.
- A positive weighting of non-empty subsets: mathematically, **a random set** :

$$\sum_{E \in \mathcal{F}} m(E) = 1$$

- m : mass function.
- *focal sets* : $E \in \mathcal{F}$ with m(E) > 0.

Disjunctive random sets

• m(E) = probability that the most precise description of the available information is of the form " $x \in E$ " for epistemic set E.

It is the probability of [only knowing " $x \in E$ " and nothing else]

- It is the portion of probability mass hanging over elements of E without being allocated.
- DO NOT MIX UP m(E) and P(E)

Basic set functions from random sets

• degree of certainty (belief) :

$$-\operatorname{Bel}(A) = \sum_{E_i \subseteq A, E_i \neq \emptyset} m(E_i)$$

- total mass of information implying the occurrence of A
- (probability of provability)
- degree of plausibility :
 - $\operatorname{Pl}(A) = \sum m(E_i) = 1 \operatorname{Bel}(A^c) \ge \operatorname{Bel}(A)$ $E_i \cap A \neq \emptyset$
 - total mass of information <u>consistent with</u> A
 - *(probability of consistency)*

Example :
$$Bel(A) = m(E1) + m(E2)$$

 $Pl(A) = m(E1) + m(E2) + m(E3) + m(E4)$
 $= 1 - m(E5) = 1 - Bel(A^c)$

Random disjunctive sets vs. imprecise probabilities

- The set $\mathcal{P}_{bel} = \{P \ge Bel\}$ is coherent: Bel is a special case of lower probability
- Bel is ∞ -monotone (super-modular at any order)
 - Order 3: $Bel(A \cup B \cup C) \ge Bel(A) + Bel(B) + Bel(C) Bel(A \cap B) Bel(A \cap C) Bel(B \cap C) + Bel(A \cap B \cap C),$ etc.
- For any set function, the solution m to the set of equations $\forall A \subseteq X g(A) = \sum_{i=1}^{n} m(E_i)$ $E_i \subseteq A, E_i \neq \emptyset$

is unique (Moebius transform)

- However m is positive iff g is a belief function
PARTICULAR CASES

• INCOMPLETE INFORMATION:

 $m(E) = 1, m(A) = 0, A \neq E$

- TOTAL IGNORANCE : m(S) = 1:
 - For all $A \neq S$, \emptyset , Bel(A) = 0, Pl(A) = 1
- PROBABILITY: if $\forall i, E_i = \text{singleton } \{s_i\}$ (hence disjoint focal sets)
 - Then, for all A, Bel(A) = Pl(A) = P(A)
 - *Hence precise* + *scattered information*
- POSSIBILITY THEORY : the opposite case
 - $E_1 \subseteq E_2 \subseteq E_3 \dots \subseteq E_n$: imprecise and coherent information
 - iff $Pl(A \cup B) = max(Pl(A), Pl(B))$, possibility measure
 - iff $Bel(A \cap B) = min(Bel(A), Bel(B))$, necessity measure

From possibility to random sets

possibility levels $1 > \alpha_2 > \alpha_3 > ... > \alpha_n$

- Given π , construct a basic probability assignment (SHAFER) let $m_i = \alpha_i - \alpha_{i+1}$ then $m_1 + \ldots + m_n = 1$, with focal sets = cuts $A_i = \{s, \pi(s) \ge \alpha_i\}$ $Bel(A) = \sum_{Ai \subseteq A} m_i = N(A); Pl(A) = \Pi(A)$
- Conversely, $\pi(s) = \sum_{i: s \in Ai} m_i$ (one point-coverage function) = $Pl(\{s\})$.
- Only in the consonant case can m be recalculated from π

Canonical examples

- **Objectivist** : Frequentist modelling of a collection of incomplete observations (imprecise statistics) :
- Uncertain subjective information:
 - Unreliable testimonies (Shafer's book) : humanoriginated singular information
- Unreliable sensors : the quality/precision of the information depends on the ill-known sensor state.

Random sets as epistemic sets of random variables

- **Dempster model** : Indirect information (induced from a probability space).
- All we know about a random variable x with range S, based on a sample space (Ω, A, P) is based on a multimapping Γ from Ω to S (Dempster):
- The meaning of the multimapping Γ from Ω to S: – if we observe ω in Ω then all we know is $x(\omega) \in \Gamma(\omega)$

$$m(E) = \sum \{ P(\{\omega\}) : E = \Gamma(\omega) \} \forall \omega \text{ in } \Omega$$

(finite case.)

Consult for more

• Random Sets and Random Fuzzy Sets as Ill-Perceived Random Variables

An Introduction for Ph.D. Student and Practitioners By Inés Couso, Didier Dubois, Luciano Sanchez *SpringerBriefs in Applied Sciences and Technology*, 2014

• Inés Couso, Didier Dubois, Statistical Reasoning with Set-Valued Information: Ontic vs. Epistemic Views. Int. J. Approximate Reasoning, 2014

Example of statistical belief function: imprecise observations in an opinion poll

• **Question** : who is your preferred candidate

in $C = \{a, b, c, d, e, f\}$???

- To a population $\Omega = \{1, ..., i, ..., n\}$ of n persons.
- Imprecise responses $\mathbf{r} = \ll \mathbf{x}(i) \in \mathbf{E}_i \gg are allowed$
- No opinion (r = C); « left wing » $r = \{a, b, c\}$;
- « right wing » $r = \{d, e, f\}$;
- a moderate candidate : $r = \{c, d\}$
- Definition of mass function:
 - $m(E) = card(\{i, E_i = E\})/n$
 - = Proportion of imprecise responses $\langle x(i) \in E \rangle$

• The probability that a candidate in subset $A \subseteq C$ is elected is imprecise :

 $Bel(A) \le P(A) \le Pl(A)$

• There is a fuzzy set F of potential winners:

 $\mu_F(x) = \sum_{x \in E} m(E) = Pl(\{x\})$ (contour function)

- μ_F(x) is an upper bound of the probability that x is elected.
 It gathers responses of those who *did not give up voting* for x
- Bel({x}) gathers responses of those who claim they will vote for x and no one else.

Example of uncertain evidence : Unreliable testimony (SHAFER-SMETS VIEW)

- « John tells me the president is between 60 and 70 years old, but there is some chance (*subjective* probability p) he does not know and makes it up».
 - $E = [60, 70]; Prob(Knowing "x \in E = [60, 70]") = 1 p.$
 - With probability p, John invents the info, so we know nothing (Note that this is different from a lie).
- We get a simple support belief function :

m(E) = 1 - p and m(S) = p

• Equivalent to a possibility distribution

- $\pi(s) = 1$ if $x \in E$ and $\pi(s) = p$ otherwise.

Unreliable testimony with lies

- « John tells me the president is between 60 and 70 years old, but
 - there is some chance (*subjective* probability p) he does not know and makes it up».
 - *John may lie* (probability q):
 - E =[60, 70]
- Modeling
 - John is competent and does not lie : m(E) = (1-p)(1-q),
 - John is competent and lies $m(E^c) = (1-p)q$.
 - John is incompetent and is boasting : m(S) = p

Dempster vs. Shafer-Smets

- A disjunctive random set can represent
 - Uncertain singular evidence (unreliable testimonies): m(E) = subjective probability pertaining to the truth of testimony E.
 - Degrees of belief directly modelled by Bel : no appeal to an underlying probability.

(Shafer, 1976 book; Smets)

- *Imprecise statistical evidence*: m(E) = frequency of imprecise observations of the form E and Bel(E) is a lower probability
 - A multiple-valued mapping from a probability space to a space of interest representing an ill-known random variable.
- Here, belief functions are explicitly viewed as lower probabilities (Dempster intuition)
- In all cases E is a set of mutually exclusive values and does not represent a real set-valued entity

Example of conjunctive random sets

Experiment on linguistic capabilities of people :

- Question to a population $\Omega = \{1, ..., i, ..., n\}$ of n persons: which languages can you speak ?
- Answers : Subsets in $\mathcal{L} = \{Basque, Chinese, Dutch, English, French,\}$?
- m(E) = % people who speak *exactly* all languages in E (and not other ones)
- Prob(x speaks A) = $\sum \{m(E) : A \subseteq E\} = Q(A)$: commonality function in belief function theory
- **Example**: « x speaks English » means « at least English »
- The belief function is not meaningful here while the commonality makes sense, contrary to the disjunctive set case.

POSSIBILITY AS UPPER PROBABILITY

- Given a numerical possibility distribution π , define $\mathcal{P}(\pi) = \{P \mid P(A) \le \Pi(A) \text{ for all } A\}$
- Then, generally it holds that $\Pi(A) = \sup \{P(A) \mid P \in \mathcal{P}(\pi)\};$ $N(A) = \inf \{P(A) \mid P \in \mathcal{P}(\pi)\}$
- So N and P are special cases of coherent lower and upper probabilities
- So π is a very simple representation of a credal set (convex family of probability measures)

LIKELIHOOD FUNCTIONS

- Likelihood functions $\lambda(x) = P(A|x)$ behave like possibility distributions when there is no prior on x, and $\lambda(x)$ is used as the likekihood of x.
- It holds that $\lambda(B) = P(A|B) \le \max_{x \in B} P(A|x)$
- If P(A| B) = λ(B) is the likelihood of "x ∈ B" then λ should be a capacity (monotonic with inclusion):

 $\{x\} \subseteq B \text{ implies } \lambda(x) \leq \lambda(B)$

It implies $\lambda(B) = \max_{x \in B} \lambda(x)$ if no prior probability is available for x.

Maximum likelihood principle is possibility theory

- The classical coin example: θ is the unknown probability of "heads"
- Within n experiments: k heads, n-k tails
- P(k heads, n-k tails $| \theta \rangle = \theta^{k} \cdot (1 \theta)^{n-k}$ is the degree of possibility $\pi(\theta)$ that the probability of "head" is θ .
 - In the absence of other information the best choice is the one that maximizes $\pi(\theta)$, $\theta \in [0, 1]$ It yields $\theta = k/n$.

LANDSCAPE OF UNCERTAINTY THEORIES BAYESIAN/STATISTICAL PROBABILITY: the language of *unique* probability distributions (*Randomized points*)

UPPER-LOWER PROBABILITIES : the language of *disjunctive* convex sets of probabilities, and lower expectations

SHAFER-SMETS BELIEF FUNCTIONS: The language of Moebius masses (*Random disjunctive sets*)

QUANTITATIVE POSSIBILITY THEORY : The language of possibility distributions (*Fuzzy (nested disjunctive) sets)* ↓ BOOLEAN POSSIBILITY THEORY (modal logic KD) : The language of Disjunctive sets

Language difficulties

- Imprecise probability, belief functions and possibility theory are in fact not fully mutually consistent:
 - Concepts that make sense for credal sets, may be hard to interpret in terms of Moebius transforms or possibility distributions and conversely
 - Simplified representations help us cut down computation costs (possibility distributions and simple belief functions)

Practical representations

- Fuzzy intervals
- Probability intervals
- Probability boxes
- Generalized p-boxes
- Clouds

Some are special random sets some not.

Probability intervals (De Campos, Moral)

- **Probability intervals** = a finite collection L of imprecise assignments $[l_i, u_i]$ attached to elements s_i of a finite set S.
- A collection $L = \{[l_i, u_i] | i = 1, ..., n\}$ induces the family \mathcal{P}_L = $\{P: l_i \leq P(\{s_i\}) \leq u_i\}.$
- A probability interval model L is **coherent** in the sense of Walley if and only if

 $- \sum_{j \neq i} l_j + u_i \le 1 \text{ and } 1 \le \sum_{j \neq i} u_j + l_i$

• Lower/upper probabilities on events are given by

$$-P_*(A) = \max(\sum_{i \in A} l_i; 1 - \sum_{i \notin A} u_i);$$

$$-P^*(A) = \min(\Sigma_{\mathrm{si}\in A} u_i; 1 - \Sigma_{\mathrm{si}\notin A} l_i)$$

• *P*_{*} is a 2-monotone Choquet capacity (De Campos and Moral)

From probabilistic confidence sets to possibility distributions

- Let $E_1, E_2, \dots E_n$ be a nested family of sets
- A set of confidence levels $a_1, a_2, \dots a_n$ in [0, 1]
- Consider the set of probabilities $\mathcal{P} = \{P, P(E_i) \ge a_i, \text{ for } i = 1, ...n\}$
- Then \mathcal{P} is representable by means of a possibility measure with distribution

$$\pi(x) = \min_{i=1,...n} \max(\mu_{Ei}(x), 1-a_i)$$

A possibility distribution can be obtained from any family of nested confidence sets and defines the credal set $\{P: P(A_{\alpha}) \ge 1 - \alpha, \alpha \in (0, 1]\}$

Possibilistic view of probabilistic inequalities

Probabilistic inequalities can be used for knowledge representation:

- Chebyshev inequality defines a possibility distribution that dominates *any* density with given mean and variance.
- Choosing sets $[x^{mean} k\sigma, x^{mean} + k\sigma], k > 0$

$$P(V \in [x^{mean} - k\sigma, x^{mean} + k\sigma]) \ge 1 - 1/k^2$$

is equivalent to writing

$$\pi(x^{mean} - k\sigma) = \pi(x^{mean} + k\sigma) = 1/k^2$$

Possibilistic view of probabilistic inequalities 2

Probabilistic inequalities can be used for knowledge representation:

• Choosing mode, bounded support $[x_*, x^*]$ and sets E_{α} of the form

 $[x^{mode} - (1 - \alpha)(x^{mode} - x_*), x^{mode} + (1 - \alpha)(x^* - x^{mode})]$

• $P(V \in E_{\alpha}) \ge 1 - \alpha$ is equivalent to defining a triangular fuzzy interval (TFI)

 $\pi(x^{mode} - (1 - \alpha)(x^{mode} - x_*)) = \pi(x^{mode} + (1 - \alpha)(x^* - x^{mode})) = \alpha$

A TFN defines a possibility distribution that dominates *any* unimodal density with the same mode and bounded support as the TFN.

Optimal order-faithful fuzzy prediction intervals

- The interval $I_L = [a_L, a_L + L]$ of fixed length L with maximal probability is of the form $\{x, p(x) \ge \beta\}$
- The most narrow prediction interval with probability α is of the form $\{x, p(x) \ge \beta\}$
- So the most natural (narrow) possibility counterpart of p is

 $\pi_{p}(a_{L}) = \pi_{p}(a_{L}+L) = 1 - P(I_{L}=\{x, p(x) \ge \beta\}).$

Such that $\Pi(A) \ge P(A)$ for all

Applications of the prob->pos transform

- Extraction of most narrow confidence of prediction intervals for all confidence levels
- Representing insufficient statistical data by a simple credal set.
- Comparing pdfs according to their dispersions (entropy) :

 $\pi_p \ge \pi_q \text{ implies } Ent(p) \le Ent(q)$ (it works even for densities with infinite variance)

Probability boxes

- A set *P* = {P: F* ≥ P ≥ F*} induced by two cumulative disribution functions is called a probability box (p-box),
- A p-box is a special random interval (continuous belief function) whose upper and lower bounds induce the same ordering.

Probability boxes from possibility distributions

- $F^*(a) = \prod_M ((-\infty, a]) = \pi(a)$ if $a \le m$ = 1 otherwise.

-
$$F_*(a) = N_M((-\infty, a]) = 0 \text{ if } a < m^*$$

 $= 1 - \lim_{x \downarrow a} \pi(x)$ otherwise

• Representing families of probabilities by fuzzy intervals is more precise than with the corresponding pairs of PDFs: $\mathcal{P}(\pi)$ is a proper subset of $\mathcal{P} = \{P: F^* \ge P \ge F_*\}$

- Not all P in \mathcal{P} are such that $\Pi \ge P$

P-boxes vs. fuzzy intervals

A triangular fuzzy number with support [1, 3] and mode 2. Let P be defined by $P(\{1.5\})=P(\{2.5\})=0.5$. Then $F_* < F < F P \notin P(\Pi)$ since $P(\{1.5, 2.5\}) = 1 > \Pi(\{1.5, 2.5\}) = 0.5$

Cumulative distributions

• A Cumulative distribution function F $F(x) = P(\{X \le x\})$

of a probability function P can be viewed as a possibility distribution dominating P since the sets $\{X \le x\}$ are nested

- in particular, $\sup\{F(x), x \in A\} \ge P(A)$
- Fuzzy intervals can be viewed as cumulative distribution functions with different kinds of nested sets as {X ≤ x}

Generalized p-boxes

- Consider nested confidence intervals $E_1, E_2, ..., E_n$ each with two probability bounds α_i and β_i such that $\mathcal{P} = \{\alpha_i \le P(E_i) \le \beta_i \text{ for } i = 1, ..., n\}$
- It comes down to two possibility distributions π (from $\alpha_i \le P(E_i)$) and π_c (from $P(E_i^c) \ge 1 - \beta_i$)
- $\pi(x) = \min_{i=1,...n} \max(\mu_{Ei}(x), 1 \alpha_i)$
- $\pi_{c}(x) = \min_{i=1,...n} \max(1 \mu_{Ei}(x), \beta_{i})$

We get a p-box if $E_i = \{x \le a_i\}$

Generalized p-boxes

- Since $\alpha_i \leq \beta_i$, distributions π and π_c are such that
 - $\pi(x) \ge 1 \pi_{c}(x) = \delta(x) = \max_{i=1,...n} \min(\mu_{Ei}(x), 1 \beta_{i})$
 - and π is comonotonic with δ (they induce the same order of values x).

Credal set : $\mathcal{P} = \mathcal{P}(\pi) \cap \mathcal{P}(\pi_{c})$

• **Theorem**: a generalized p-box is a belief function (random set) with focal sets

 $\{x: \pi(x) \ge \alpha\} \setminus \{x: \delta(x) > \alpha\}$

If $\delta(x) = 0$: usual possibility distribution

$$\pi(a) = \pi(b) = 1 - \alpha;$$

$$\delta(a) = \delta(b) = 1 - \beta$$

Elementary example of a generalized p-box

- All that is known is that P(E) in [a, b] on a finite set E of S
- It corresponds to the belief function :
- $m(E) = a; m(E^c) = 1 b; m(S) = b a.$
- The two possibility distributions :
 - $-\pi(s) = 1$ if s in E; 1–a otherwise.
 - $-\pi_{c}(s) = 1$ if s in E^c; b otherwise.
- The generalized p-box $(\pi_{1,} 1 \pi_c)$

From generalized p-boxes to clouds

How useful are these representations:

- Can help elicitating credal sets from data or experts, and summarizing outputs of an imprecise probability method.
- Usual P-boxes can address questions about threshold violations (x ≥ a ??), not questions of the form a ≤ x≤ b ??
- The latter questions are better addressed by possibility distributions or generalized p-boxes

Relationships between representations

- Generalized p-boxes are special random sets that generalize BOTH p-boxes and possibility distributions
- Clouds extend G. P-boxes but induce lower probabilities that are not even 2-monotonic.
- Probability intervals are not comparable to generalized p-boxes: they induce lower probabilities that are 2-monotonic

Important pending theoretical issues

- Comparing representations in terms of **informativeness**.
- **Conditioning** : several definitions for several purposes in the various special cases.
- **Independence notions**: distinguish between epistemic and objective notions.
- Find a general setting for **information fusion** operations (e.g. Dempster rule of combination).

- Consonant case : relative specificity.
- π' more specific (more informative) than π in the wide sense if and only if $\pi' \leq \pi$.
- (any possible value in information state π' is at least as possible in information state π)
 - Complete knowledge: $\pi(s_0) = 1$ and = 0 otherwise.
 - Ignorance: $\pi(s) = 1, \forall s \in S$

• 1. Using contour functions: $\pi(s) = Pl(\{s\}) = \sum_{s \in E} m(E)$

 m_1 is more cf-informative that m_2 iff $\pi_1 \le \pi_2$

- Corresponds to the specificity ordering in the consonant case
- Degree of imprecision

 $|\mathbf{m}| = \sum_{\mathbf{E}} \mathbf{m}(\mathbf{E})^* |\mathbf{E}| = \sum_{\mathbf{s} \in \mathbf{S}} \pi(\mathbf{s})$

• $\pi_1 \le \pi_2$ implies $|m_1| \le |m_2|$

• 2. Using belief or plausibility functions : m_1 is more pl-informative that m_2 iff $Pl_1 \le Pl_2$ iff $Bel_1 \ge Bel_2$

It corresponds to comparing credal sets

 $\mathsf{P}(\mathsf{m}) = \{\mathsf{P} \ge \mathsf{Bel}\}:$

 $Pl_1 \le Pl_2$ if and only if $P(m_1) \subseteq P(m_2)$

- 3. Comparing commonality functions: m_1 is more Q-informative that m_2 iff $m_1 \subseteq_Q m_2$ iff $Q_1 \leq Q_2$ where $Q(A) = \sum_{A \subseteq Ei} m(E_i)$
- There are larger focal sets for m₂ than for m₁
- A typical information ordering for belief functions.

Specialisation

- 4. m_1 is more specialised than m_2 iff
 - Any focal set of m_1 is included in at least one focal set of m_2
 - Any focal set of m_2 contains at least one focal set of m_1
 - There is a stochastic matrix W that shares masses of focal sets of m₂ among focal sets of m₁ that contain them:

•
$$m_2(E) = \sum_{F \subseteq E} w(E, F) m_1(F)$$

Results

- $m_1 \subseteq_s m_2$ implies $m_1 \subseteq_{Pl} m_2$ implies $m_1 \subseteq_{cf} m_2$
- $m_1 \subseteq_s m_2$ implies $m_1 \subseteq_Q m_2$ implies $m_1 \subseteq_{cf} m_2$
- However $m_1 \subseteq_{Pl} m_2$ and $m_1 \subseteq_Q m_2$ are not comparable and can contradict each other
- In the consonant case : all orderings collapse to $m_1 \subseteq_{cf} m_2 \ (\pi_1 \le \pi_2)$.

Example

- $S = \{a, b, c\}; m_1(ab) = 0.5, m_1(bc) = 0.5;$
- $m_2(abc) = 0.5, m_2(b) = 0.5$
- $\mathbf{m}_2 \subset_{\mathbf{Pl}} \mathbf{m}_1 : \mathrm{Pl}_1(\mathbf{A}) = \mathrm{Pl}_2(\mathbf{A})$ but $\mathrm{Pl}_2(\mathrm{ac}) = 0.5 < \mathrm{Pl}_1(\mathrm{ac}) = 1$
- $\mathbf{m_1} \subset_{\mathbf{Q}} \mathbf{m_2} : \mathbf{Q_1}(\mathbf{A}) = \mathbf{Q_2}(\mathbf{A})$ but $\mathbf{Q_1}(\mathbf{ac}) = 0 < \mathbf{Q_2}(\mathbf{ac}) = 0.5$
- And contour functions are equal : a/0.5, b/1, c/0.5
- Neither $m_1 \subseteq_s m_2$ nor $m_2 \subseteq_s m_1$ holds
- Not comparable % specialisation

Next step:

• To be continued with interval data statistics