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Motivation for going beyond 
probability	



•  Distinguish  between uncertainty due to variability from 
uncertainty due to lack of knowledge or missing 
information. 	



•  The main tools to representing uncertainty are	


–   Probability distributions : good for expressing 

variability, but information demanding	



–  Sets: good for representing incomplete information, but 
often crude representation of uncertainty	



•  Find representations that allow for both aspects of 
uncertainty.	





Example	


•  Variability: daily quantity of rain in Toulouse	



–  May change every day	


–  It is objective: can be estimated through statistical data	



•  Incomplete information : Birth date of Brazilian  
President	


–  It is not a variable: it is a constant!	


–  Information is subjective: Most may have a rough idea 

(an interval), a few know precisely, some have no idea.	


–  Statistics on birth dates of other presidents do not help 

much.	





What do set-valued data mean?	



•  A set can represent	


–   the precise description of an actual object (ontic set) : 

a region in an image.	


–  or incomplete information about an ill-known entity 

(epistemic set) : interval containing an ill-known birth-
date. 	



•   The ill-known entity can be	


– A constant (x ∈ E) 	


–  or a random variable (P_x ∈ {P: P(E) = 1}).	





Set-Valued Representations of 
Partial Knowledge	



•  An ill-known quantity x is represented as a 
disjunctive set, i.e. a subset E of mutually exclusive 
values, one of which is the real one.	



•  Pieces of information of the form x ∈ E	


–  Intervals E = [a, b]: good for representing incomplete 

numerical information	


–  Classical Logic: good for representing incomplete 

symbolic (Boolean) information	


    	

 	

E = Models of a wff φ stated as true. 	



 This kind of information is subjective (epistemic set)	





BOOLEAN POSSIBILITY THEORY	


Natural set functions under incomplete information: 	


If all we know is that x ∈ E ≠ Ø then	


-  Event A is possible if A ∩ E ≠ Ø   (logical consistency)	


	

Possibility measure 	

 	

Π(A) = 1, and 0 otherwise	



Π(A ∪ B) = max(Π(A), Π(B)); 	


	



-  Event A is sure if E ⊆ A       (logical deduction)	


	

Necessity measure 	

 	

N(A) = 1, and 0 otherwise	



N(A ∩ B) = min(N(A), N(B)).	


	



N(A) = 1 - Π(Ac) : N(A) = 1 iff Π(Ac) = 0	


N(A) ≤ Π(A)	



This corresponds to a fragment of  a modal logic (KD)	


	





Representations of uncertainty due to 
incompleteness	



•  More expressive than epistemic sets (pure 
intervals or classical logic), and Boolean 
possibility theory	



•  Less demanding than single probability 
distributions 	



•  Explicitly allows for missing information	


•  Allows for addressing the same problems as 

probability. 	





Possibility Theory ���
(Shackle, 1961, Zadeh, 1978)	



•  A piece of incomplete information "x ∈ E" 
admits of degrees of possibility: E ⊆ S is a 
(normalized) fuzzy set : µE : S –> [0, 1]	



•  µE(s) = Possibility(x = s) = πx(s) in [0, 1]	


•  πx(s)  is the degree of plausibility of x = s	


•  Conventions: πx(s) = 1 for some value s.	


	

πx(s) = 0 iff x = s is impossible, totally surprising	


	

πx(s) = 1 iff x = s is normal, fully plausible, unsurprising	


	

 	

 	

 	

 	

 	

(but no certainty)	
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A family of nested epistemic sets	


	


In the continuous case: α = Poss (x not in Aα)	



Aα	



α	





Improving expressivity of incomplete 
information representations	



What about the birth date of the president?	


	


•  partial ignorance with ordinal preferences : May have 

reasons to believe that 1933 > 1932 ≡ 1934 > 1931 ≡ 1935 
> 1930 > 1936 > 1929	



•  Linguistic information described by fuzzy sets:	


“ he is old ” : membership function µOLD is interpreted as  a 
possibility distribution on possible birth dates (Zadeh).	


	


•  Nested intervals E1, E2, …En with confidence levels	





POSSIBILITY AND NECESSITY ���
OF AN EVENT	



How confident are we that x ∈ A ⊂ S ? (an event A occurs) 
given a possibility distribution on S 	



•  Π(A) = maxs∈A π(s) : 	


         to what extent A is consistent with π 	



	

 	

 	

(= some x ∈ A  is possible)	


 	

 	

The degree of possibility that x ∈ A	


•  N(A) = 1 – Π(Ac) = min s∉A 1 – π(s): 	



	

 	

to what extent no element outside A is possible   	


   = to what extent π implies A	



   	

 	

 The degree of certainty (necessity) that x ∈ A	





Basic properties (finite case)	



Π(A ∪ B) = max(Π(A), Π(B)); 	


	

 	

 	

N(A ∩ B) = min(N(A), N(B)). 	



Mind that most of the time : 	

 	

 	

         	


	

Π(A ∩ B) < min(Π(A), Π(B)); 	

 	

 	


	

 N(A ∪ B) > max(N(A), N(B) 	

 	

 	

	



Example: Total ignorance on A and B = Ac 	

	


	

 	

 	

(Π(A) = Π(Ac) = 1)	

	



Corollary N(A) > 0 ⇒ Π(A) = 1	

 	

 	

 	

	





Comparing information states	


•  π' more specific than π in the wide sense 	

 	

	

 	



	

if and only if π' ≤ π	


Any possible value according to π' is at least according to  π : 
π' is more informative  than π	



	


–  COMPLETE KNOWLEDGE: The most specific ones	



•  π(s0) = 1 ;           π(s) = 0 otherwise	


–  IGNORANCE: π(s) = 1, ∀ s ∈ S	



•  Principle of least commitment (minimal specificity): In a 
given information state, any value not proved impossible is 
supposed to be possible : maximise possibility degrees.	





Certainty-qualification	



•  Attaching a degree of certainty α to event A	


•  It means N(A) ≥ α ⇔ Π(Ac) =sup s ∉ Aπ(s) ≤ 1 – α	


•  The least informative π sanctioning N(A) ≥ α is :	



–  π(s) =  1 if s ∈ A  and  1 – α if s ∉ A	


•  In other words: π(s) = max(µA, 1 – α) 	
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POSSIBILITY  DISTRIBUTION INDUCED 	


BY EXPERT  CONFIDENCE INTERVALS	



α2	



α3	



π(x) = mini = 1, …n max (µEi(x), 1- ai)	
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FUZZY INTERVAL	



At the limit with an infinity of nested intervals	


	


N(Aα) ≥ 1- α, α in (0, 1]	



Aα	



α	





A pioneer of possibility theory	


•  In the 1950’s, G.L.S. Shackle called "degree of potential 

surprize" of an event its degree of impossibility = 1 - Π(Α).	



•  Potential surprize is valued on a disbelief scale, namely a 
positive interval of the form [0, y*], where y* denotes the 
absolute rejection of the event to which it is assigned, and 0 
means that nothing opposes to the occurrence of A. 	



	


•  The degree of surprize of an event is the degree of surprize of 

its least surprizing realization. 	


•  He introduces a notion of conditional possibility	





Qualitative vs. quantitative possibility theories	


•  Qualitative:	



–  comparative: A complete pre-ordering ≥π  on S 	

	

A well-
ordered partition of S: E1 > E2 > … > En	



–  absolute: πx(s) ∈ L = finite chain, complete lattice...	


•  Quantitative: πx(s) ∈ [0, 1], integers...	


One must indicate where the numbers come from.	


	


All theories agree on the fundamental maxitivity axiom    	


	

 	

 	

Π(A ∪ B) = max(Π(A), Π(B))	



Theories diverge on the conditioning operation	





Quantitative possibility theory	


•  Membership functions of fuzzy sets	



–  Natural language descriptions pertaining to numerical universes 
(fuzzy numbers)	



–  Results of fuzzy clustering 	


    Semantics: metrics, proximity to prototypes	


•  Imprecise probability	



–  Random experiments with imprecise nested outcomes 	


–  Possibility distributions encode special convex probability sets	



	

Semantics: frequentist,  or  subjectivist (gambles)...	





Blending intervals and 
probability	



•  Representations that refine Boolean possibility 
theory and account for both variability and 
incomplete knowledge must combine probability 
and sets.	


–  Sets of probabilities : imprecise probability theory	


–  Random(ised) sets : Dempster-Shafer theory	


–  Fuzzy sets: numerical possibility theory	



•  Each event has a degree of belief (certainty) and a 
degree of plausibility, instead of a single degree of 
probability	





GRADUAL REPRESENTATIONS OF 
UNCERTAINTY using capacities	



Family of propositions or events E forming a  
Boolean Algebra 	


–  S, Ø are events that are certain and ever impossible 

respectively.	


•  A confidence measure g: a function from E to 

[0,1] such that	


–  	

 g(Ø) = 0       ;        g(S) = 1	


–  monotony : if A ⊆ B (=A implies B)  then g(A) ≤ g(B) 	



•  g(A) quantifies the confidence of an agent in 
proposition A. 	



•  g is a Choquet capacity	





BASIC PROPERTIES OF CONFIDENCE 
MEASURES	



•  g(A∪B) ≥ max(g(A), g(B)); 	


•  g(A∩B) ≤ min(g(A), g(B))	


•  It includes: 	



–  probability measures:  P(A∪B) = P(A) + P(B) - P(A∩B)	


–  possibility measures 	

Π(A∪B) = max(Π(A), Π(B))	


–  necessity measures 	

N(A∩B) = min(N(A),N(B))	



•  The two latter functions do not require a 
numerical setting	





A GENERAL SETTING FOR REPRESENTING 
GRADED CERTAINTY AND PLAUSIBILITY	



•  2 conjugate set-functions Pl and Cr generalizing 
probability P, possibility Π, and necessity N.	



•  Conventions : 	


–  Pl(A) = 0  "impossible" ;  Cr(A) =  1   "certain"	


–  Pl(A) =1 ; Cr(A) = 0   "ignorance" (no information)	


–  Pl(A) - Cr(A) quantifies ignorance about A	



•  Postulates	


–  Cr and Pl are monotonic under inclusion (= capacities).	


–  Cr(A) ≤ Pl(A)  "certain implies plausible"	


–  Pl(A) = 1 - Cr(Ac) 	

duality certain/plausible	


–  If Pl = Cr then it is P.	





Imprecise probability theory	


•  A state of information is represented by a family P 

of probability distributions over a set X.	


•  For instance: incomplete knowledge of a 

frequentist probabilistic model : ∃ P ∈ P.	


•  To each event A is attached a probability interval 

[P*(A), P*(A)] such that 	


–  P*(A) = inf{P(A), P∈ P}	


–  P*(A) = sup{P(A), P∈ P} = 1 – P*(Ac) 	



•  Usually P is strictly contained in {P(A), P ≥ P*}	


•  {P(A), P ≥ P*} is convex (credal set).	





WHY REPRESENTING INFORMATION BY 
PROBABILITY FAMILIES ?	



Often probabilistic information is incomplete:	


–  Expert opinion (fractiles, intervals with 

confidence levels)	


–  Subjective estimates of support, mode, etc. of a 

distribution	


–  Parametric model with incomplete information 

on parameters (partial subjective information 
on mean and variance)	



–  Parametric model with confidence intervals on 
parameters due to a small number of 
observations	





WHY REPRESENTING INFORMATION 
BY PROBABILITY FAMILIES ?	



•  In the case of generic (frequentist) information 
using a family of probabilistic models, rather than 
selecting a single one, enables to account for 
incompleteness and variability.	



•  In the case of subjective belief: distinction 
between 	


–  not believing a proposition (P*(A) and P*(Ac) low)	


–   and believing its negation (P*(Ac) high). 	





Subjectivist view (Peter Walley)	


•  A theory that handles convex probability sets 	



–  Plow(A) is the highest acceptable price for buying a bet 
on singular event A winning 1 euro if A occurs	



–  Phigh(A) = 1 – Plow(Ac) is the least acceptable price for 
selling this bet.	



–  These prices may differ (no exchangeable bets)	


•  Rationality conditions: 	



–   No sure loss : {P ≥ Plow} not empty 	


–  Coherence: P*(A) = inf{P(A), P ≥ Plow} = Plow(A) 	



•  Convex probability sets (credal sets)  are actually 
characterized by lower expectations of real-valued 
functions (gambles), not just events. 	





Capacity-based lower 
probabilities	



•  Coherent lower probabilities are important 
examples of certainty functions. The most general 
numerical approach to uncertainty : Cr = P*	



•  They satisfy super-additivity: if A∩B = Ø then 	


                    P* (A) + P* (B) ≤ P* (A∪B)	



•  One may require the 2-monotony property for Cr: 	


        Cr(A) + Cr(B) ≤ Cr(A∪B) + Cr(A∩B)	



–  ensures non-empty coherent credal set:	


	

 	

 	

 	

P(Cr) ={P: P(A) ≥ Cr(A)} ≠ Ø . 	



Cr is then called a convex capacity. 	





Coherence and deductive closure	


•  Suppose the knowledge is of the form of a 

consistent set B of assertions φi  of the form	


        « x in Ei » i = 1, …,n   (interpreted as N(Ei) = 1)	


•  The set of consequences of B ={φi i = 1, …,n} is 

C(B) = {φ| B |=φ} (deductively closed) 	


•  Define a Boolean  necessity function N* such that 

N*(A) = 1 iff  φ = « x in A »  in C(B)                            
iff E = ∩i = 1, …,n Ei ⊆ A           	

	





Coherence and deductive closure	



•  If the knowledge B is viewed as the credal set   
{P: P(Ei) = 1, i = 1, …,n} then the coherent lower 
probability induced by its natural extension is the 
Boolean necessity function N*, obtained from  the 
deductive closure C(B), which is another example 
of coherent lower probability.	



•  Conclusion Coherence generalizes deductive 
closure, and a consequence of B is a formula 
whose set of models has lower probability 1.	





Random sets	


•   A probability distribution m on the family  

of non-empty subsets of a set S. 	


•  A positive weighting of non-empty subsets: 

mathematically, a random set : 	


            ∑    m(E) = 1 	

	


              E ∈ F	


•  m : mass function. 	


•  focal sets : E ∈F with m(E) > 0. 	





Disjunctive random sets	



•  m(E) = probability that the most precise  
description of the available  information is 
of the form "x ∈ E” for epistemic set E.	


 It is the probability of [only knowing "x ∈ E" 

and nothing else]	


–  It is the portion of probability mass hanging 

over elements of E without being allocated.	


•  DO NOT MIX UP  m(E) and P(E)	





Basic set functions from random sets	



•  degree of certainty (belief) :    	


–  Bel(A) =          ∑           m(Ei)	


	

 	

 	

Ei ⊆ A, Ei ≠ Ø	



–  total mass of information implying  the occurrence of A	


–  (probability of provability)	



•  degree of plausibility :                          	


–  Pl(A) = 	

∑         m(Ei) = 1 - Bel(Ac)  ≥ Bel(A)	


	

 	

      Ei ∩ A ≠ Ø    	



–  total mass of information consistent with  A	


–  (probability of consistency)	





Example : Bel(A) = m(E1) + m(E2)���
Pl(A) = m(E1) + m(E2) + m(E3) + m(E4)���

	

  = 1 – m(E5) = 1 – Bel(Ac)	
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E1	
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Random disjunctive sets vs. ���
imprecise probabilities	



•  The set Pbel = {P ≥ Bel} is coherent: Bel is a 
special case of lower probability	



•  Bel is ∞-monotone (super-modular at any order)	


–  Order 3: Bel(A∪B∪C) ≥ Bel(A) + Bel (B) + Bel (C) - 

Bel(A∩B) - Bel(A∩C) - Bel(B∩C) + Bel(A∩B∩C), 
etc.	



•  For any set function, the solution m to the set of 
equations ∀ A ⊆ X g(A) =  ∑  	

m(Ei)	



	

 	

 	

 	

  Ei ⊆ A, Ei ≠ Ø	


is unique (Moebius transform) 	


–  However m is positive iff g is a belief function	





PARTICULAR CASES	


•  INCOMPLETE INFORMATION: 	


                                                   m(E) = 1, m(A) = 0‚ A ≠ E	


•  TOTAL IGNORANCE : m(S) = 1:	



–   For all  A≠ S, Ø, Bel(A) = 0, Pl(A) = 1	


•  PROBABILITY:  if ∀i, Ei = singleton {si} (hence disjoint 

focal sets )	


–  Then, for all A, Bel(A) =  Pl(A) = P(A)	


–  Hence precise + scattered information  	



•  POSSIBILITY THEORY : the opposite case 	


	

E1 ⊆ E2 ⊆ E3… ⊆ En : imprecise and coherent information  	



–  iff  Pl(A ∪ B) = max(Pl(A), Pl(B)), possibility measure	


–  iff  Bel(A ∩ B) = min(Bel(A), Bel(B)), necessity measure	





From possibility to random sets	



•  Given π,  construct a basic probability assignment (SHAFER)	


       let mi = αi – αi+1       then m1 +… + mn = 1, 	


	

 	

 	

with focal sets = cuts Ai = {s, π(s) ≥ αi}	


	

 	

Bel(A) = ∑Ai⊆A  mi = N(A); Pl(A) = Π(A)	



•  Conversely, π(s) = ∑i: s∈Ai mi (one point-coverage function) 	


	

 	

       = Pl({s}).	



•  Only in the consonant case can m be recalculated from π 	



1

F

α3

possibility levels
1 > α2 > α3 >… > αn

α2
α4



Canonical examples	



•  Objectivist : Frequentist modelling of a collection 
of incomplete observations (imprecise statistics) : 	



•  Uncertain subjective  information: 	


–  Unreliable testimonies (Shafer’s book) : human-

originated singular information	


•  Unreliable sensors :  the quality/precision of the 

information depends on the ill-known sensor state. 	





Random sets as epistemic sets of  
random variables	



•  Dempster model : Indirect information (induced 
from a probability space). 	



•  All we know about a random variable x with range 
S, based on a sample space (Ω, A, P) is based on a 
multimapping  Γ from Ω to S  (Dempster):	



•  The meaning of the multimapping  Γ from Ω to S :	


–  if we observe ω in Ω then all we know is x (ω) ∈ Γ(ω)	



m(E) =∑{P({ω}):E = Γ(ω)}  ∀ ω in Ω  	


(finite case.)	





Consult for more	



•  Random Sets and Random Fuzzy Sets as 
Ill-Perceived Random Variables	



An Introduction for Ph.D. Student and Practitioners	


By Inés Couso, Didier Dubois, Luciano Sanchez	


SpringerBriefs in Applied Sciences and Technology, 
2014	


•  Inés Couso, Didier Dubois, Statistical Reasoning 

with Set-Valued Information: Ontic vs. Epistemic 
Views. Int. J. Approximate Reasoning, 2014	





Example of statistical belief function: 
imprecise observations in an opinion poll	



•  Question : who is your preferred candidate 	


                   in C = {a, b, c, d, e, f} ???	



–  To a population Ω = {1, …, i, …, n} of n persons.	


–  Imprecise responses r = « x(i) ∈ Ei » are allowed	


–  No opinion (r =C) ; « left wing » r = {a, b, c} ; 	


–  « right wing » r = {d, e, f} ;	


–   a moderate candidate : r = {c, d}	



•  Definition of mass function: 	


–  m(E) = card({i, Ei = E})/n	


–  = Proportion of imprecise responses « x(i) ∈ E »	





•  The  probability  that  a  candidate  in  subset   A  ⊆  C   is 
elected is imprecise :   	



                    Bel(A) ≤ P(A) ≤ Pl(A)	


•  There is a fuzzy set F of potential winners: 	



µF(x) = ∑ x ∈ E m(E) = Pl({x}) (contour function)	


•   µF(x) is an upper bound of the probability that x is elected. 

It  gathers  responses of those who did not give up voting  
for x	



•  Bel({x}) gathers  responses of those who claim they will 
vote for x and no one else.	





Example of uncertain evidence : Unreliable 
testimony (SHAFER-SMETS VIEW)	



•  « John tells me the president is between 60 and 70 years 
old, but there is some chance (subjective probability p) he 
does not know and makes  it up».	


–  E =[60, 70];  Prob(Knowing “x∈ E =[60, 70]”) = 1 - p.	


–  With probability p, John invents the info, so we know nothing 	


               (Note that this is different from  a lie).	



•   We get a simple support belief function :           	


	

 	

 	

m(E) = 1 – p 	

and 	

m(S) = p	



•  Equivalent to a possibility distribution 	


–    π(s) = 1 if x ∈ E       and  	

π(s) = p otherwise.	





Unreliable testimony with lies   	


•  « John tells me the president is between 60 and 70 years 

old, but 	


–  there is some chance (subjective probability p) he does not know 

and makes  it up».	


–  John may lie (probability q):	


–  E =[60, 70]	



	

 	

	


•  Modeling	



–  John is competent  and does not lie : m(E)  = (1 – p)(1 – q),	


–  John is competent and lies  m(Ec)  = (1 – p)q. 	


–  John is incompetent and is boasting : m(S) = p	





Dempster vs. Shafer-Smets	


•  A disjunctive random set can represent	



–  Uncertain singular evidence (unreliable testimonies): m(E) = 
subjective probability pertaining to the truth of testimony E. 	



•  Degrees of belief directly modelled by Bel : no appeal to an 
underlying probability. 	



(Shafer, 1976 book; Smets)	


	


–  Imprecise statistical evidence: m(E) = frequency of  imprecise 

observations of the form E and Bel(E) is a lower probability	


•  A multiple-valued mapping from a probability space to a space of 

interest representing an ill-known random variable. 	


•  Here, belief  functions are explicitly viewed as lower probabilities	



(Dempster intuition)	


•  In all cases E is a set of mutually exclusive values and does 

not represent a real set-valued entity	





Example of conjunctive random sets	


Experiment on linguistic capabilities of people :	


•  Question    to  a population  Ω  =  {1,  …,  i,  …,  n}  of  n 

persons:  which languages can you speak ?	


•  Answers  :  Subsets  in  L  =  {Basque,  Chinese,  Dutch, 

English, French,….} ?	


•  m(E) = % people who speak exactly  all  languages in E 

(and not other ones)	


•  Prob(x speaks A) =∑{m(E) : A⊆E} = Q(A) : commonality 

function in belief function theory	


•  Example: « x speaks English » means « at least English »	


•  The  belief  function  is  not  meaningful  here  while  the 

commonality makes sense, contrary to the disjunctive set 
case. 	





POSSIBILITY AS UPPER PROBABILITY	



•  Given a numerical possibility distribution π, define	


    P(π) = {P |  P(A) ≤ Π(A) for all A}	


	


•  Then, generally it holds that 	


           Π(A) = sup {P(A) | P ∈ P(π)}; 	


           N(A) = inf {P(A) | P ∈ P(π)}	


•  So N and P are special cases of coherent lower and upper 

probabilities	


•  So π is a very simple representation of a credal set (convex 

family of probability measures)	





LIKELIHOOD FUNCTIONS	



•  Likelihood functions λ(x) = P(A| x) behave like possibility 
distributions when there is no prior on x, and λ(x) is used as 
the likekihood of x.	



• It holds that λ(B) = P(A| B) ≤ maxx ∈ B P(A| x) 	


• If P(A| B) = λ(B) is the likelihood of “x ∈ B” then λ should 

be a capacity (monotonic with inclusion): 	


	

 	

{x} ⊆ B implies λ(x) ≤ λ(B)	



 	

 	

 	

	


   It implies λ(B) = maxx ∈ B λ(x) if no prior probability is 

available for x.	





Maximum likelihood principle is 
possibility theory	



•  The classical coin example: θ is the unknown 
probability of “heads”	



•  Within n experiments: k heads, n-k tails	


•  P(k heads, n-k tails | θ) = θk·(1- θ)n-k is 	


   the degree of possibility π(θ) that the probability of 

“head” is θ.	


 In the absence of other information the best choice 

is the one that maximizes π(θ),  θ ∈ [0, 1] 	


	

 	

 	

 	

It yields θ = k/n.	





LANDSCAPE OF UNCERTAINTY THEORIES	


BAYESIAN/STATISTICAL PROBABILITY: the language of 
unique probability distributions (Randomized points)	


	


UPPER-LOWER PROBABILITIES : the language of disjunctive 
convex sets of probabilities, and lower expectations       	

 	



	

 	

 	

	


SHAFER-SMETS BELIEF FUNCTIONS: The language of 
Moebius masses (Random disjunctive sets) 	

                        	


	


QUANTITATIVE POSSIBILITY THEORY : The language of 
possibility distributions (Fuzzy (nested disjunctive) sets) 	

	


	


BOOLEAN POSSIBILITY THEORY (modal logic KD) : 	


The language of Disjunctive sets	





Language difficulties	


•  Imprecise probability, belief functions and possibility 

theory are in fact not fully mutually consistent:	


–  Concepts that make sense for credal sets, may be hard 

to interpret in terms of Moebius transforms or 
possibility distributions and conversely	



–  Simplified representations help us cut down 
computation costs (possibility distributions and simple 
belief functions)	





Practical representations	



•  Fuzzy intervals	


•  Probability intervals	


•  Probability boxes	


•  Generalized p-boxes	


•  Clouds	


 Some are special random sets some not.  	





Probability intervals (De Campos, Moral)	



•  Probability intervals = a finite collection L of imprecise 
assignments [li , ui] attached to elements si of a finite set S.  

•  A collection L = {[li , ui ] i = 1,… n} induces the family PL 
= {P: li ≤  P({si})  ≤ ui}. 

•  A probability interval model L is coherent in the sense of 
Walley if and only if 	


–  ∑j ≠ i lj + ui ≤ 1 and  1 ≤ ∑j ≠ i uj + li  

•  Lower/upper probabilities on events are given by 
–  P*(A) = max(Σsi∈A li ; 1 – Σsi∉A ui) ; 
–  P*(A) = min(Σsi∈A ui ; 1 – Σsi∉A li)  

•  P* is a 2-monotone Choquet capacity (De Campos and 
Moral)	





From probabilistic confidence sets to 
possibility distributions	



•  Let E1, E2, …En be a nested family of sets	


•  A set of confidence levels a1, a2, …an in [0, 1]	


•  Consider the set of probabilities  	

 	



	

P = {P, P(Ei) ≥ ai, for i = 1, …n}	


•  Then P is representable by means of a possibility 

measure with distribution	


	

 	

π(x) = mini = 1, …n max (µEi(x), 1- ai)	
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POSSIBILITY  DISTRIBUTION INDUCED 	


BY EXPERT  CONFIDENCE INTERVALS	



α2	



α3	



m2= α2 - α3	
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FUZZY INTERVAL: N(Αα) = 1 - α	



A possibility distribution can be obtained from any 	


family of nested confidence sets and defines the credal set 	



{P: P(Αα) ≥ 1 - α, α ∈ (0, 1]}	



α	





Possibilistic view of probabilistic 
inequalities	



Probabilistic inequalities can be used for knowledge 
representation: 	


•  Chebyshev inequality defines a possibility distribution that 

dominates any density with given mean and variance.	


•  Choosing sets [xmean – kσ, xmean + kσ], k >0 	



P(V ∈ [xmean – kσ, xmean + kσ]) ≥ 1 – 1/k2 	


	



	

is equivalent to writing	


 	



π(xmean – kσ) = π(xmean + kσ) = 1/k2 	





Chebychev	

 Camp-Meidel	





Possibilistic view of probabilistic 
inequalities 2	



Probabilistic inequalities can be used for knowledge 
representation: 	


•  Choosing mode, bounded support [x*, x*] and sets Eα   

of the form  	


      [xmode – (1-α) (xmode–x*), xmode +(1-α) (x*–xmode)]	


•  P(V ∈ Eα) ≥ 1 – α is equivalent to defining a triangular 

fuzzy interval (TFI)	


π(xmode – (1-α) (xmode–x*)) = π(xmode +(1-α) (x*–xmode))  = α	



   A TFN defines a possibility distribution that dominates any 
unimodal density with the same mode and bounded 
support as the TFN.	





•  The interval IL= [aL, aL+ L]  
of fixed length L with 
maximal probability is of 
the form  {x, p(x) ≥ β}	



•  The most narrow prediction 
interval with probability α 
is of the form {x, p(x) ≥ β}	



•  So the most natural 
(narrow) possibility 
counterpart of p is	



      πp(aL) = πp(aL+ L) = 	


      1 – P(IL= {x, p(x) ≥ β}).	


Such that Π(A) ≥ P(A) for all 	



Optimal order-faithful ���
fuzzy  prediction intervals	



β



Optimal order-faithful 	


fuzzy prediction interval	





Applications of ���
the prob->pos transform	



•  Extraction of most narrow confidence of 
prediction intervals for all confidence levels	



•  Representing insufficient statistical data by a 
simple credal set.	



•  Comparing pdfs according to their dispersions 
(entropy) :	



πp ≥ πq implies Ent(p) ≤ Ent(q)	


(it works even for densities with infinite variance)	





Probability boxes	


•  A set  P = {P: F* ≥ P ≥ F*} induced by two 

cumulative disribution functions is called a 
probability box (p-box), 	



•  A p-box is a special random interval (continuous belief 
function) whose upper and lower bounds induce the same 
ordering.	
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Probability boxes from possibility 
distributions	



–  F*(a) = ΠM( ( -∞, a])  = π(a) if a ≤ m	


	

 	

                     = 1 otherwise.	



–  F*(a) = NM( ( -∞, a] )  = 0 if a < m*	



                                           = 1 - limx ↓ aπ(x) otherwise	


•   Representing families of probabilities by fuzzy intervals 

is more precise than with the corresponding pairs of 
PDFs: P(π) is a proper subset of P = {P: F* ≥ P ≥ F*} 	



–  Not all P in P are such that Π ≥ P	





P-boxes vs. fuzzy intervals	
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A  triangular fuzzy number with support [1, 3] and mode 2. 	


Let P be defined by P({1.5})=P({2.5})=0.5. 	


Then  F* < F < F P ∉ P(Π) since 	


P({1.5, 2.5}) = 1 > Π({1.5, 2.5}) = 0.5	





Cumulative distributions	



•  A Cumulative distribution function  F                  
F(x) =  P({X ≤ x}) 	



 of a probability function P can be viewed as a 
possibility distribution dominating P since the sets 
{X ≤ x} are nested	


•  in particular, sup{F(x), x ∈ A} ≥ P(A)	


•  Fuzzy intervals can be viewed as cumulative 

distribution functions with different kinds of 
nested sets as {X ≤ x} 	





Generalized p-boxes	


•  Consider nested confidence intervals E1, E2, …En each 

with two probability bounds αi and βi such that 	


   P = {αi ≤ P(Ei) ≤ βi for i = 1, …, n}	



•  It comes down to two possibility distributions 	


                  π (from αi ≤ P(Ei)) 	


            and πc (from P(Ei

c) ≥ 1- βi )	


•  π(x) = mini = 1, …n max (µEi(x), 1- αi)	


•  πc(x) = mini = 1, …n max (1- µEi(x), βi)	



We get a p-box if Ei = {x ≤ ai}	


	


	





Generalized p-boxes	


•  Since αi ≤ βi , distributions π and πc are such that 	


–  π(x) ≥ 1 - πc(x) = δ(x) = maxi = 1, …n min (µEi(x), 1- βi)	


–   and π is comonotonic with δ (they induce the 

same order of values x).	


Credal set : P = P (π) ∩ P (πc)	


•  Theorem: a generalized p-box is a belief function 

(random set) with focal sets 	


	

 	

    {x: π(x) ≥ α} \ {x: δ(x) > α} 	



If δ(x) = 0 : usual possibility distribution	


	


	





π(a) = π(b) = 1- α ; ���
δ(a) =  δ(b) = 1-  β 	
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Elementary example ���
of a generalized p-box	



•  All that is known is that P(E) in [a, b] on a 
finite set E of S	



•  It corresponds to the belief function : 	


•  m(E) = a; m(Ec) = 1- b; m(S) = b – a.	


•  The two possibility distributions : 	


– π(s) = 1 if s in E; 1-a otherwise.	


– πc(s) = 1 if s in Ec; b otherwise.	



•  The generalized p-box (π1, 1- πc) 	





From generalized p-boxes to 
clouds	





How useful are these 
representations: 	



•  Can help elicitating credal sets from data or 
experts, and summarizing outputs of an imprecise 
probability method.	



•  Usual P-boxes can address questions about 
threshold violations (x ≥ a ??), not  questions of 
the form  a ≤ x≤ b ??	



•  The latter questions are better addressed by 
possibility distributions or generalized p-boxes	





Relationships between representations	



•  Generalized p-boxes are special random sets 
that generalize BOTH p-boxes and 
possibility distributions	



•  Clouds extend G. P-boxes but induce lower 
probabilities that are not even 2-monotonic.	



•  Probability intervals are not comparable to 
generalized p-boxes: they induce lower 
probabilities that are 2-monotonic	





Important pending theoretical issues	



•  Comparing representations in terms of 
informativeness.	



•  Conditioning : several definitions for several 
purposes in the various special cases.	



•  Independence notions: distinguish between 
epistemic and objective notions.	



•  Find a general setting for information fusion 
operations (e.g. Dempster rule of combination).	





Comparing belief functions in terms of 
informativeness	



•  Consonant case : relative specificity. 	


π' more specific (more informative) than π in 

the wide sense if and only if π' ≤ π.	


(any possible value in information state  π' is 

at least as possible in information state π) 	

	


–  Complete  knowledge:  π(s0)  =  1  and  =  0 

otherwise. 	


–  Ignorance: π(s) = 1, ∀ s ∈ S	





Comparing belief functions in terms of 
informativeness	



•  1. Using contour functions: 	

 	

 	


	

π(s)= Pl({s}) = ∑s ∈ E m(E)	



m1 is more cf-informative that  m2 iff π1 ≤ π2	



•  Corresponds to the specificity ordering in the 
consonant case	



•  Degree of imprecision	


	

|m| = ∑ E m(E)*|E| = ∑s ∈ S π(s)	



•   π1 ≤ π2 implies |m1| ≤ |m2| 	





Comparing belief functions in terms of 
informativeness	



• 2. Using belief or plausibility functions : 	


m1 is more pl-informative that  m2 iff Pl1 ≤ Pl2	



iff Bel1 ≥ Bel2	


It corresponds to comparing credal sets 	


                    P(m)= {P ≥ Bel}:	


Pl1 ≤ Pl2 if and only if P(m1) ⊆ P(m2)	





Comparing belief functions in terms of 
informativeness	



•  3. Comparing commonality functions:       
m1 is more Q-informative that  m2 iff 	



              m1 ⊆Qm2 iff Q1 ≤ Q2	


where Q(A) =    ∑A⊆ Ei m(Ei)	


•  There are larger focal sets for m2 than for 

m1 	


•  A typical information ordering for belief 

functions. 	


	

 	

 	

	





Specialisation	


•  4. m1 is more specialised than m2 iff	



– Any focal set of m1is included in at least one 
focal set of m2	



– Any focal set of m2 contains at least one focal 
set of m1	



– There is a stochastic matrix W that shares 
masses of focal sets of m2 among focal sets of 
m1 that contain them:	



•  	

 m2 (E) = ∑F⊆E w(E, F) m1(F)	





Results	



•  m1 ⊆sm2 implies m1 ⊆Plm2 implies m1 ⊆cfm2	



•  m1 ⊆sm2 implies m1 ⊆Qm2 implies m1 ⊆cfm2	



•  However m1 ⊆Plm2 and m1 ⊆Qm2 are not 
comparable and can contradict each other	



•  In the consonant case : all orderings 
collapse to m1 ⊆cfm2 (π1 ≤ π2).	





Example	


•  S = {a, b, c}; m1(ab) = 0.5, m1(bc) = 0.5;	


•  m2(abc) = 0.5, m2(b) = 0.5	


•  m2 ⊂Plm1 : Pl1(A) = Pl2(A) 	

 	

 	

 	



	

                         but Pl2(ac) = 0.5 < Pl1(ac)  = 1	


•  m1 ⊂Qm2 : Q1(A) = Q2(A) 	

 	

 	

 	



	

                          but Q1(ac) = 0 < Q2(ac)  = 0.5	


•  And contour functions are equal : a/0.5, b/1, c/0.5	


•  Neither m1 ⊆sm2 nor m2 ⊆sm1 holds	


•  Not comparable % specialisation	





Next step:  	



•   To be continued with interval data statistics	




