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Where do interval data come from?

I Limited reliability of measuring instruments.

I Significant digits.

I Intermittent measurement.

I Censoring.

I Binned data.

I (Not randomly) missing data.

I Gross ignorance - Theoretical contraints.

I . . .

More details in: S. Ferson et al., Experimental Uncertainty Estimation and Statistics for Data Having Interval

Uncertainty, SAND2007-0939, 2007.
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Premises

I The interval specifies where the value is, and where the value
is not.

I This assertion will be understood to have two mathematical
components:

I Ignorance about the distribution over the interval.
I Full confidence.
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Descriptive Statistics from interval data

I The cartesian product [l1, u1]× [l2, u2]× . . .× [ln, un]
represents our (incomplete) knowledge about the sample
x = (x1, . . . , xn).

I What do we know about its mean, std. deviation, empirical
distribution function, etc.?
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Mean, median, variance...

I Nomenclature: l = (l1, . . . , ln) and u = (u1, . . . , un).
I We can easily determine bounds for x and median(x).

I Mean: l ≤ x ≤ u.
I Median: median(l) ≤ median(x) ≤ median(u).
I Variance: min{s2

l , s
2
u} ≤ s2

x ≤ max{s2
l , s

2
u}?

(The mean and the median are comonotonic operators, while the
variance is not.)
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Example

[0, 2]× [1, 3]× [1, 3]× [2, 4]× [0, 2] represents ill-knowledge about
x = (x1, x2, x3, x4, x5). (Sample size n = 5).

I Information about the mean: 0.8 ≤ x ≤ 2.8.

I Information about the median: 1 ≤ median(x) ≤ 3.

0 1 2 3 4

l median(l)

li

0 1 2 3 4

ui

median(u)u
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And what about the variance?

I The upper and lower bounds of the variance cannot be written
in terms of the respective variances of l and u in general.

I We need to solve the problem:

Calculate max[y2 − (y)2] and min[y2 − (y)2]

Subject to: li ≤ yi ≤ ui , i = 1, . . . , n.
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Information about frequencies of events and about the
empirical distribution

I Proportion of items in A:

f A ≤
#{i : xi ∈ A}

n
≤ f A,

where f A = #{i :[li ,ui ]⊆A}
n and f A = #{i :[li ,ui ]∩A 6=∅}

n .

I Empirical distribution function:

Fu(y) ≤ Fx(y) ≤ Fl(y), ∀ y ∈ R.

A

l1 l2 l3 u3u2u1

y
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Exercise 1: The imprecise histogram

I Consider the following sample of size 10:

(2.1, 4.3, 4.2, 1.7, 3.8, 7.5, 6.9, 5.2, 6.7, 4.8)

I Consider the grouping intervals [0, 3), [3, 6), [6, 9], and draw
the corresponding histogram of frequencies.

I Now suppose that someone else has imprecise information
about the above data set given by means of the following
cartesian product of intervals:

[1, 4]×[2, 5]×[3, 5]×[1, 2]×[3, 5]×[4, 8]×[6, 8]×[4, 7]×[6, 8]×[3, 5]

I Consider the initial grouping intervals. For each interval, plot
two lines, corresponding to its maximum and the minimum
frequency. Compare the new “imprecise histogram” with the
first one.
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Solution to Exercise 1

The histogram associated to the original (precise) data:

0 3 6 9

2

3

5
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Solution to Exercise 1: cont.
The “imprecise” histogram is the following one. It represents the
collection of histograms where the respective heights are between
the minimum and the maximum heights, and the sum of the three
heights is equal to 10.

0 3 6 9

2

3

5

4

7
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Example

[0, 2]× [1, 3]× [1, 3]× [2, 4]× [0, 2] represents ill-knowledge about
x = (x1, x2, x3, x4, x5). (Sample size n = 5).

Information about empirical distribution function: p-box.

0 1 2 3

0.4

0.8

1
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Exercise 2.- Lack of expressiveness of p-boxes

Consider the following imprecise samples of size n = 2:

I Sample 1.- [l1, u1] = [1, 4] [l2, u2] = [2, 3].

I Sample 2.- [l ′1, u
′
1] = [1, 3] [l ′2, u

′
2] = [2, 4].

(a) Determine their respective empirical p-boxes. Do they
coincide?

(b) Determine the upper and lower frequencies associated to the
interval [2, 3] in both cases. Do they coincide?

14 / 41



Intro Descrip. Stat. R.Sets Stat. Conclusion

Solution to Exercise 2

(a) Both samples produce the same p-box:

0 1 2 3 4

0.5

1

(b) The respective lower and upper frequencies are:

I f A = #{i :[li ,ui ]⊆A}
2 = 0.5 and f A = #{i :[li ,ui ]∩A 6=∅}

2 = 1.

I f ′A =
#{i :[l′i ,u

′
i ]⊆A}

2 = 0 and f
′
A =

#{i :[l′i ,u
′
i ]∩A 6=∅}
2 = 1.

(They do not coincide.)
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Some curiosities about Exercise 2

I Both samples produce the same “contour function”,
x  π(x) = P∗({x}).

I P∗ is a possibility measure, Π(A) = supπx∈A(x), because the
focals are nested.

I P
′∗ dominates Π, and therefore the set of frequency

distributions compatible with [l1, u1]× [l2, u2] is more
informative than the other.

I Which one is more informative, P∗ or P
′∗?
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Some curiosities about Exercise 2

I Both samples produce the same “contour function”,
x  π(x) = P∗({x}).

I P∗ is a possibility measure, Π(A) = supπx∈A(x), because the
focals are nested.

I P
′∗ dominates Π, and therefore the set of frequency

distributions compatible with [l1, u1]× [l2, u2] is more
informative than the other.

I Which one is more informative, P∗ or P
′∗?

I At first sight, the dataset [l1, u1]× [l2, u2] seems to be more
informative than [l ′1, u

′
1]× [l ′2, u

′
2].
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Some curiosities about Exercise 2

I Both samples produce the same “contour function”,
x  π(x) = P∗({x}).

I P∗ is a possibility measure, Π(A) = supπx∈A(x), because the
focals are nested.

I P
′∗ dominates Π, and therefore the set of frequency

distributions compatible with [l1, u1]× [l2, u2] is more
informative than the other.

I Which one is more informative, P∗ or P
′∗?

I At first sight, the dataset [l1, u1]× [l2, u2] seems to be more
informative than [l ′1, u

′
1]× [l ′2, u

′
2].

I But, according to the commonality functions, [l ′1, u
′
1]× [l ′2, u

′
2]

seems to be more informative than [l1, u1]× [l2, u2]. In fact,
Q(A) ≥ Q ′(A), ∀A, and Q([1, 4]) > Q ′([1, 4]).
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Random set: main notions

(Ω,A,P) prob. space; Γ : Ω→ ℘(R) represents incomplete
information about X : Ω→ R. Γ is said to be a random set if
A∗ = {ω ∈ Ω : Γ(ω) ∩ A 6= ∅} is a measurable set for every
A ∈ βR.
I Upper probability of A: P∗(A) = P({ω ∈ Ω : Γ(ω)∩A 6= ∅}).
I Lower probability of A: P∗(A) = P({ω ∈ Ω : Γ(ω) ⊆ A}).
I Aumann expectation: E (Γ) = {E (Y ) : Y ∈ S(Γ)}.

(Aumann expectation is closely related to Choquet integral.)

I Kruse variance: Var(Γ) = {Var(Y ) : Y ∈ S(Γ)}.

I A.P. Dempster, Upper and lower probabilities induced by multi-valued mappings, The Annals of
Mathematical Statistics 38, 325-339 (1967).

I J. Aumann. Integral of set valued functions. Journal of Mathematical Analysis and Applications 12, 1-12
(1965).

I R. Kruse. On the Variance of Random Sets, Journal of Mathematical Analysis and Applications 122,
469-473 (1987).
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Exercise 3.- Random sets: main notions

I Consider a set of 10 students enrolled in an international
course, Ω = {s1, . . . , s10}.

I Consider the collection of languages: L = {English, French,
German, Italian, Spanish, Dutch}.

I Consider the Laplace distribution over the initial set,
representing the random selection of a student of the course.

I The multi-valued mapping Γ : {s1, . . . , s10} → ℘({1, . . . , 6})
reflects my knowledge about the number of those languages
that each of the students can speak.

20 / 41



Intro Descrip. Stat. R.Sets Stat. Conclusion

Exercise 3.- Random sets: main notions (Cont.)

Γ(s1) = {4, 5, 6}, Γ(s2) = {2, 3}, Γ(s3) = {2},
Γ(si ) = {2, . . . , 6}, i = 4, . . . , 10.

(a) What do we know about the proportion of students that
speak 3 or more different languages?

(b) Calculate the bounds of the Aumann expectation of Γ.

(c) Calculate the bounds for the actual variance of the “number
of languages spoken” in the population, according to the
available information.
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Solution to Exercise 3

(a) P∗([3,∞)) = P({si ∈ Ω : Γ(si ) ⊆ [3,∞), Γ(si ) 6= ∅}) =
P({s1}) = 0.1,
P∗([3,∞)) = P({si ∈ Ω : Γ(si ) ∩ [3,∞) 6= ∅}) =
P(Ω \ {s3}) = 0.9.

(b) minE (Γ) = 0.1 · 4 + 0.9 · 2 = 2.2.
maxE (Γ) = 0.1 · 2 + 0.1 · 3 + 0.8 · 6 = 5.3.

(c) minVar(Γ) = 0.2 = Var(Y1), with
Y1(s1) = 4,Y1(s3) = 2,Y1(si ) = 3, i 6∈ {1, 3}.
maxVar(Γ) = 4 = Var(Y2), with
Y2(si ) = 2, i = 2, . . . , 6,Y2(si ) = 6, i = 1, 7, 8, 9, 10.
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Families of probabilities associated to Γ

I P∗ and P∗ are ∞-order capacities. They univocally determine
a pair of upper and lower previsions.

I Credal set: M(P∗) = {P : P ≤ P∗} = {P : P ≥ P∗}.
I Family of probability measures of selections:
P(Γ) = {PY :Y ∈ S(Γ)}, where
S(Γ) = {Y : Ω→ R Y (ω) ∈ Γ(ω) ∀ω ∈ Ω}.

I M(P∗) ⊇ P(Γ).

I The lack of convexity of P(Γ) makes their difference
important in some cases.
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Exercise 4.- Lack of expressiveness of the credal set

I Γ represents ill-knowledge about a certain constant
c0 = X (a). All we know is that c0 ≤ k.

I Ω = {a}, Γ(a) = (−∞, k].
I P(Γ) = {δc : c ≤ k}.
I M(P∗Γ ) = {P : P((−∞, k]) = 1}.
I Var(Γ) = {0}

I Γ represents ill-knowledge about X ′. All we know is that
X ′(ω) ≤ k , ∀ω ∈ [0, 1].

I Ω′ = [0, 1], Γ′(ω) = (−∞, k]
I P(Γ′) = {P : P((−∞, k]) = 1}.
I M(P∗Γ′) = {P : P((−∞, k]) = 1}.
I Var(Γ′) = [0,∞).
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Shafer’s Evidence Theory

Consider an arbitrary finite universe U. In Evidence Theory, a
mapping m : ℘(U)→ [0, 1] is said to be a basic mass assigment
when it satisfies the following restrictions:

I m(∅) = 0

I
∑

A⊆U m(A) = 1.

Furthermore, the belief and the plausibility measure associated to
m are the respective set-functions Bel : ℘(U)→ [0, 1] and
Pl : ℘(U)→ [0, 1] defined as follows:

I Bel(B) =
∑

A⊆B m(A), ∀B ∈ ℘(U)

I Pl(B) =
∑

A∩B 6=∅m(A), ∀B ∈ ℘(U).

G. Shafer, A mathematical theory of evidence, Princeton University Press, 1976.
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Exercise 5.- Random sets and Evidence Theory

Shafer’s Evidence Theory and the theory of random sets are closely
related from a formal point of view.

Consider a measurable space (Ω,A), a finite universe U and a
random set Γ : Ω→ ℘(U) with non-empty images.

I Check that the lower and upper probabilities associated to Γ
do respectively coincide with the belief and plausibility
measures associated to some mass assignment.

I Determine such a mass assignment as a function of PΓ, the
probability measure induced by Γ on ℘(℘(U)).
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Solution to Exercise 5
Let us consider the set function m : ℘(U)→ [0, 1] defined as
follows:

m(B) = P({ω ∈ Ω : Γ(ω) = B}) = PΓ({B}), ∀B ∈ ℘(U).

We observe that
I m(∅) = 0 and
I

∑
B∈℘(U) m(B) = 1,

(It is a basic mass assignment.)
Furthermore, the upper and lower probabilities induced by Γ can be
defined as functions of m as follows:

P∗(A) = P({ω ∈ Ω : Γ(ω) ∩ A 6= ∅}) =
∑

B :B∩A 6=∅

m(B),

P∗(A) = P({ω ∈ Ω : Γ(ω) ∩ A 6= ∅}) =
∑

B :B⊆A
m(B).

Therefore, P∗ and P∗ do respectively satisfy the properties of
plausibility and belief functions.
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How do we do with interval datasets?

I How do we represent the sample information?

I How do we test hypotheses?
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How do we represent the sample information?

I We take a random sample of size n. (An instance of a
sequence of n i.i.d. random variables).

I Our ill-knowledge about the attribute values is represented by
means of n intervals.

I Is it an instance of a sequence of n independent identically
distributed random sets?
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Exercise 6.- Independent random variables and dependent
random sets

I We have a light sensor that displays numbers between 0 and
255.

I We take 10 measurements per second. When the brightness is
higher than a threshold (255), the sensor displays the value
255 during 3/10 seconds, regardless the actual brightness
value.

I Below we provide data for six measurements:
I The actual values of brightness represent a realization of a

simple random sample of size n = 6.
I But what about the displayed quantities and our

interval-valued information? Are them independent?

actual values 215 150 200 300 210 280
displayed quantities 215 150 200 255 255 255

set-valued information {215} {150} {200} [255,∞) [0,∞) [0,∞).
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Solution to Exercise 6

The sample of the “true” values of brightness can be seen as a
realization of a 6-dimensional random vector whose components
are independent identically distributed random variables.
Notwithstanding, our incomplete information about it does not
satisfy the condition of random set independence. In fact, we have:

P(Γi ⊇ [255,∞)|Γi−1 ⊇ [255,∞), Γi−2 6⊇ [255,∞)) = 1, ∀ i ≥ 3.
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Exercise 7.- Dependent random variables and independent
random sets

I X0 and Y0 respectively represent the temperature (in oC) of
an ill person taken at random in a hospital just before taking
an antipyretic (X0) and 3 hours later (Y0).

I The random set Γ1 represents the information about X0 using
a very crude measure (it reports always the same interval
[37, 40.5]).

I The random set Γ2 represents the information about Y0

provided by a thermometer with +/−0.5 oC of precision.

(a) Are X0 and Y0 stochastically independent?

(b) Are Γ1 and Γ2 stochastically independent?
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Comments about independence

I In Exercise 6, a sequence of n i.i.d. ill-observed random
variables is represented by means of non independent random
sets.

I In Exercise 7, two independent random sets represent
imprecise information about a pair of dependent attributes.

I Random set independence represents independence between
the sources of information about the attributes, and not
independence between the attributes themselves.

I I. Couso, S. Moral, P. Walley, Examples of Independence for Imprecise Probabilities First International
Symposium on Imprecise Probabilities and Their Applications (ISIPTA’99).

I I. Couso, S. Moral, P. Walley, A survey of concepts of independence for imprecise probabilities, Risk,
Decision and Policy, 5, 165- 187 (2000).

I I. Couso, S. Moral, Independence concepts in evidence theory, International Journal of Approximate
Reasoning 51 (7), 748-758.
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Frequentist Hypothesis testing: notations

I X : Ω→ R random variable with distribution function Fθ.

I X = (X1, . . . ,Xn) : Ωn → Rn simple random sample of size n.

I Null hypothesis: H0 : θ ∈ Θ0,

I Alternative hypothesis: H1 : θ ∈ Θ1.
I Test: ϕ : Rn → {0, 1}. It associates a decision to each

possible sample of size n.
I ϕ(y) = 1 means “rejection”,
I ϕ(y) = 0 means “no rejection” or “acceptance”.
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Frequentist Hypothesis testing: notations (cont.)

I Rejection region: R = {y ∈ Rn :ϕ(y) = 1}.
I Size of the test: supremum of the possible values for its

expectation, assuming that H0 is true. Mathematically,

size(ϕ) = sup
θ∈Θ0

Eθ(ϕ) = sup
θ∈Θ0

Pθ(R).

I Let (ϕα)α∈(0,1) a sequence of tests, with nested rejection
regions (Rα)α∈(0,1) and supθ∈Θ0

Pθ(Rα) = α.

I p-value of a sample y: p(y) = inf{α ∈ (0, 1) : y ∈ Rα}.
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Set-valued test functions for interval data

I Suppose that we have imprecise information about the sample
realization x = (x1, . . . , xn), expressed by means of a subset of
Rn, γ ⊆ Rn.

I Consider a non-randomized test ϕ with rejection region R.

I Let us calculate the set-valued output of the test as follows:

ϕ(γ) = {ϕ(y) : y ∈ γ} =


{1} if γ ⊆ R

{0} if γ ∩ R = ∅
{0, 1} otherwise

I The set-valued output represents our imprecise information
about ϕ(x).

I S. Ferson et al., Experimental Uncertainty Estimation and Statistics for Data Having Interval Uncertainty,
SAND2007-0939, 2007.

I T. Denœux et al., Nonparametric rank-based statistics and significance tests for fuzzy data. Fuzzy Sets
and Systems, 153:1-28, 2005.

I I. Couso, L. Sánchez, Defuzzification of fuzzy p-values, In D. Dubois et al.(Eds), Soft Methods for
Handling Variability and Imprecision, Advances in Soft Computing, volume 48, pages 126-132, 2008.
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Set-valued test functions for interval data: example

I X is normally distributed with known variance σ2 = 1 and unknown
expectation µ.

I We consider the test H0 : µ = 0 against H0 : µ 6= 0 and take a
sample of size n = 25.

I Under the null hypothesis, the statistic (X−µ0)
σ/
√
n

= 5X follows a

standard normal distribution.

I Consider the 0.05-sized test function ϕ(x) =

{
1 if |5 x | > 1.96

0 otherwise.

I We obtain set-valued information about the attribute, γ ⊆ R25.

I Information about the sample mean: it belongs to [0.4, 0.6].

I Decision: reject.

{5 · x1+...+x25
25 : (x1, . . . , x25) ∈ γ}

{5 · x1+...+x25
25 : (x1, . . . , x25) ∈ R}
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Set-valued p-values and associated set-valued tests

I Let γ ⊆ Rn represent our imprecise information about the
sample realization x = (x1, . . . , xn).

I Set of possible values for the p-value:
pval(γ) = {pval(y) : y ∈ γ}

th
re

sh
ol

d

reject

no decision

accept (no reject)

interval p-value
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Example: generalized MWW test

rejection rate indecision rate acceptance rate

rejection, indecision and acceptance rates
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MWW test, bounds of rejection rates

rejection rate for precise data rejection rate for interval data rejection and indecision rate for interval data

rejection and indecision rates
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Conclusion

There exists a coherent range of set-functions combining interval
and probability for the representation of uncertainty.

I Imprecise probability is the proper theoretical umbrella.

I The choice between set-functions depends on how expressive
it is necessary to be in a given application.

I There exist simple practical representations of imprecise
probability.

I The statistical analysis from interval data is much related to
imprecise probabilities:

I The upper and lower probabilities of the multi-valued mapping
are ∞-order capacities.

I Sometimes, the information provided by the multi-valued
mapping about the distribution of the “original” random
variable is not fully represented by means of the credal set
associated to those capacities, but by some proper subset.
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