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Scheduling these two days

First Day

I Why IPs? Five motivating problems

I IPs in practice? Inference algorithms

I Many variables? IP graphical models
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I Sensitivity analysis

I Hypothesis testing

I Data mining

I Knowledge-based expert systems
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Motivating Imprecise Probability

I Proper treatment of missing data

I Reliable classification

I Sensitivity analysis

I Feature selection – “robust” statistical tests

I Representation of qualitative assessments

I Elicitation of expert knowledge



Scheduling Motivations Computations with credal sets IPGMs Hypothesis Testing Learning Experts

R

I R: Programming language and environment tuned for statistical

analysis.

I http://www.r-project.org

I Download and install it!

I install.package("e1071")

I install.package("bnlearn")

I install.package("IDPSurvival")

I install.package("lpSolve")

I install.package("rcdd")
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Missing Data – an example

I Patient presents symptoms that could be related to lung cancer.

I Physician can run tests for Bronchitis and do X-rays, as well as

check for Dyspnea. However, (supposedly) they can only assess

whether the patient is a Smoker by asking the patient themselves.

I Patient did not answer whether they are a smoker in the

questionnare.

I (Hidden information: patient has a discount in their insurance

because they declared not to be a smoker to the insurance company.)

Should smoking be ignored? Should it be marginalized out?

Should it be treated with (greater) care?
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Missing Data – another example

I Suppose we are given the following questionnaire.

I The possible answers are bad, so-so, good. It is also possible to

leave it empty.

What about? Vlad Barack Roger Maria Penelope

Mr E

Mr A

Mr DC

Let’s fill it in!
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Missing Data – another example

I Suppose we are given the following questionnaire.

I The possible answers are bad, so-so, good. It is also possible to

leave it empty.

What about? Vlad Barack Roger Maria Penelope

Mr E
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Missing Data – another example

I Earlier today I gave the following questionnaire to three people,

whose identity shall be kept anonymous.

I The only answer options are bad or so-so. It is also possible to leave

it empty.

What about? Vlad Barack Roger Maria Penelope

Mr E bad so-so bad

Mr A bad so-so good so-so

Mr DC bad bad so-so good
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Missing Data – another example

I Earlier today I gave the following questionnaire to three people,

whose identity shall be kept anonymous.

I The only answer options are bad or so-so. It is also possible to leave

it empty.

Vlad Barack Roger Maria Penelope

Mr E bad so-so GREAT AMAZING bad

Mr A bad GOOD so-so WHO IS? so-so

Mr DC bad bad so-so good GREAT

“The only way to obtain unbiased estimation is to model

missingness.”
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Missing Data

I Should we consider missing as another category?

I Should we consider all possible completions of the data?

I Should we treat some missing values in a way, some in another?
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Reliable classification
I Consider the following problem:

I Objects contain some defining features (say m of them) that

(possibly) can be used to identify them.

I Objects can be categorized into classes. The class of an object might

be unknown to us.

I Given a collection of objects of known classes, build a model that

can “guess” the class of an object of unknown class.

I Let us assume a log-linear model (C class var, Fi features):

P(C |F1, . . . ,Fm) ∝ P(C ) ·
m∏
i=1

P(Fm|C )

I Given F1, . . . ,Fm, guessing the class can be done by taking

maxC P(C |F1, . . . ,Fm).

I Values P(C ) and P(Fi |C ) can be inferred using the collection of

objects of known classes.
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Reliable classification - Iris example

http://mirlab.org/jang/books/dcpr/image/iris.gif
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Reliable classification - Iris example
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Iris example - classification1.txt

# http://www.bombonera.org/sipta/

options(width=300)

library(e1071)

data(iris)

#pairs(iris[1:4],

# main="Iris Data (R=setosa,G=versicolor,B=virginica)",

# pch=21, bg=c("red","green3","blue")[unclass(iris$Species)])

for(i in 1:ncol(iris)) if(is.numeric(iris[,i]))

iris[,i] <- as.factor(iris[,i] > median(iris[,i]))

iris[1:10,]

iris.training <- iris[c(1:30,51:80,101:130),]

iris.testing <- iris[-c(1:30,51:80,101:130),]
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Iris example - classification2.txt

model <- naiveBayes(Species ~ ., laplace=1,

data = iris.training)

prediction.classes <- predict(model, iris.testing)

prediction.probs <- predict(model, iris.testing, type=’raw’)

probs.max <- apply(prediction.probs, 1, max)

sum(prediction.classes == iris.testing$Species)/

length(iris.testing$Species)

table(prediction.classes,iris.testing$Species)

summary(prediction.classes)
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Iris example - classification3.txt

cut <- 0.95

prediction.classes.high <- prediction.classes[probs.max > cut]

sum(prediction.classes.high ==

iris.testing$Species[probs.max > cut])/

length(prediction.classes.high)

table(prediction.classes.high,

iris.testing$Species[probs.max > cut])

prediction.classes.low <- prediction.classes[probs.max <= cut]

sum(prediction.classes.low ==

iris.testing$Species[probs.max <= cut])/

length(prediction.classes.low)

table(prediction.classes.low,

iris.testing$Species[probs.max <= cut])
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Reliable classification

I Can we improve classification accuracy?

I Can we provide a subset of the classes that contains the correct one?

I Can we identify hard- and easy-to-classify instances?

I If probabilities are wrong, a simple cut-off or rejection rule might not

be enough.
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Sensitivity Analysis

I Suppose that using a probabilistic model, we have reached a

conclusion. Is this conclusion sensitive to modifications of the

model?

I Usual procedure is to apply local modifications to the model and to

check whether the conclusion remains inaltered.
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Sensitivity Analysis - an example

Cohn-Kanade (CK+) database, CVPR 2010.

If you can, try to identify the best expression representing what Mr E thinks of Penelope.
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Sensitivity Analysis - an example
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Sensitivity Analysis - an example
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Sensitivity Analysis - an example
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Sensitivity Analysis - an example
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Sensitivity Analysis - an example

I We build a model with 23 Facial action units (facs) from the

landmarks.

I We predict all these 23 facs.

I Standard techniques achieve about 90% accuracy.

Source: wikipedia.
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Sensitivity Analysis

I The model for expression recognition is quite complicate. Are the

results reliable?

I If we employ a small modification in one parameter, would results

change?

I If we allow all model parameters to vary within a region (near the

estimated values), would results change?

I Some facial expressions are arguably easier to spot. Can we

automatically identify that?
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Sensitivity Analysis - an example

Cohn-Kanade (CK+) database, CVPR 2010.

If you can, try to identify the best expression representing what Mr E thinks of Penelope.
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“Robust” feature selection

I We are given a (potentially large) number of covariates and want to

identify those which are useful to predict a binary response.

I For example, let us choose only some Fi to include in the model:

P(C |F1, . . . ,Fm) ∝ P(C ) ·
m∏
i=1

P(Fm|C )

I An usual procedure is to employ some statistical tests. An example

is the Mann-Whitney u-test (a.k.a. Wilcoxon rank-sum test) to test

whether P(X > Y ) 6= 0.5 (or specific to one of the inequality sides),

where X and Y represent some same characteristic in two

populations.

I “MannWhitney is more robust than the Student’s t-test”, Wikipedia

[citation needed]. “If it is written on wikipedia, then it is true”,

anonymous author.
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“Robust” feature selection - an example
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“Robust” feature selection - an example - feature1.txt

data(iris)

#iris <- iris[iris$Species != ’setosa’,]

#pairs(iris[1:4],

# main="Iris Data (R=setosa,G=versicolor,B=virginica)",

# pch=21, bg=c("red","green3","blue")[unclass(iris$Species)])

iris.versicolor <- iris[iris$Species == ’versicolor’,]

iris.virginica <- iris[iris$Species == ’virginica’,]

n = nrow(iris.virginica)

set.seed(1)

g1 <- sample.int(n,n/2)

g2 <- sample.int(n,n/2)

wilcox.test(iris.versicolor$Sepal.Width[g1],

iris.virginica$Sepal.Width[g2],alternative=’less’)

wilcox.test(iris.versicolor$Sepal.Width[-g1],

iris.virginica$Sepal.Width[-g2],alternative=’less’)
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“Robust” feature selection - an example

I Can we do feature selection in a principled and “robust” manner?
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“Robust” feature selection - yet another example
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“Robust” feature selection - yet another example

I Log-rank (Mantel-Haenszel) test.

I Gehan-Wilcoxon (Peto & Peto modified) test.
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“Robust” feature selection - yet another example -

feature2.txt

library(IDPSurvival)

data(Aids2)

Aids2[1:10,]

Aids2$death = Aids2$death - Aids2$diag

Aids2$status = 1*(Aids2$status==’D’)

aids <- Aids2[(Aids2$state==’VIC’)|(Aids2$state==’NSW’) ,]

plot(survfit(Surv(aids$death,aids$status) ~ 1))

plot(survfit(Surv(aids$death,aids$status) ~ (aids$state==’VIC’)))

testLR <- survdiff(Surv(aids$death,aids$status) ~

(aids$state==’VIC’), rho = 0)

zLR <- sign(testLR$obs[1]-testLR$exp[1])*sqrt(testLR$chisq)

print(1-pnorm(zLR))

testPP <- survdiff(Surv(aids$death,aids$status) ~

(aids$state==’VIC’), rho = 1)

zPP <- sign(testPP$obs[1]-testPP$exp[1])*sqrt(testPP$chisq)

print(1-pnorm(zPP))
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“Robust” statistical tests

I Can we tell whether the result of a statistical test is robust or not?

I Are usual tests calibrated?

I Can we come up with a measure of “robustness” for the test result?
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Eliciting expert knowledge / Qualitative assessments
I A tennis match between Maria and Penelope.

I Result of Maria after two sets: win, draw or loss?

DETERMINISM

Penelope does not know

what is a racket, and

Maria is a professional

Maria (certainly) wins

P(Win)

P(Draw)

P(Loss)

=

 1

0

0



UNCERTAINTY

Maria can only use the

handle of the racket to

hit. Win is two times

more probable than draw,

and this being three times

more probable than loss

P(Win)

P(Draw)

P(Loss)

=

 .6

.3

.1



IMPRECISION

Maria is blindfolded. Win

is more probable than

draw, and this is more

probable than loss

P(Win) ≥ P(Draw)

P(Draw) ≥ P(Loss)

P(Win)

P(Draw)

P(Loss)

=

α+ β + γ

α+ β

α


∀α, β, γ such that

α ≥ 0, β ≥ 0, γ ≥ 0,

3α+ 2β + γ = 1
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From prob distributions to (linear) previsions (and back)

I In vitro fertilization: 3 embryos transfered, but only X implanted

ΩX := {0, 1, 2, 3}

I Bayesian net to assess P(X |age, . . .) [Corani et al., 2012]

P(X = 0) = .75 P(X = 1) = .21 P(X = 2) = .035 P(X = 3) = .005

I Complete model to (precisely) compute any expectation:

EP [X ] = .295 = .21 + .7 + .015 (mean)

I Given a generic f : ΩX → R, a (linear) functional/prevision

EP [f ] :=
∑

x∈ΩX
P(x) · f (x)

I Vice versa, given E [f ], compute P(x) = E [(X = x)]

I Representation theorem: E [f ] = EP [f ] [Seb] [de Finetti, 1974]
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From sets of distributions to (lower) previsions (and back)

I A (imprecise/credal) network used to assess bounds on P(X ):

P(X = 0) ≥ .7 P(X = 1) ≤ .25 P(X = 2) ≤ .05 P(X = 3) ≤ .01

I Only the bounds of the expectations can be computed

E [f ] = min ∑
x∈Ω P(x)=1

P(x)≥0∀x∈ΩX
P(X=0)≥.7 P(X=1)≤.25
P(X=2)≤.05 P(X=3)≤.01

∑
x∈ΩX

P(x) · f (x) E (X ) = .00

E (X ) = .37

I Not anymore linear functional. E.g., prob of no triplet?

E [X < 3] = .99 > .70 = E [(X = 0)] + E [(X = 1)] + E [(X = 2)]

I Vice versa? Given E [f ], compute P(x) := E [(X = x)] and P(x)

The functional induced by these constraints is E ′[f ] ≤ E [f ]
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Credal sets [Levi, 1980]

I Imprecise knowledge about X as a set K (X ) of distributions

I K (X ) induces the functional (coherent lower prev) [Walley, 1991]

EK [f ] := minP(X )∈K(X )

∑
x∈ΩX

P(x) · f (x)

I K (X ) assumed to be convex (and closed)! Why?

Convexification does not affect the optimum of a linear function

I K (X ) is a very general uncertainty model called credal set [Didier]

I Assume K (X ) induced by a finite number of linear constraints

The set of extreme points ext[K (X )] has finite cardinality too

I The task is a LP and the solution is on an extreme point!

EK [f ] = minP(X )∈ext[K(X )]

∑
x∈ΩX

P(x) · f (x)
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Exercise #1 (ex1.r)

Consider the quaternary variable X in the fertilization example

and the assessment P(X ) (precise) and K (X ) (imprecise)

1. Compute µX := EP(X ) (mean) and
√
EP [(µX − X )2] (std dev)

2. Compute EK (X ) and EK (X )

3. Check sublinearity of EK (X ) by considering the prob of no triplets

4. Compute ext[K (X )]

5. Repeat the (imprecise) computations using the extreme points
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Credal sets (CSs) over Boolean variables

I Boolean X , values in ΩX = {x , x}

I Precise P(X ) =

 p

1− p

 p ∈ [0, 1]

I Biggest CS? Whole simplex Kv (X )

I Kv (X ) has 2 extreme points

I True for any CS (convexity in 1D)

I Combinatorial approach appealing!

Intervals are fully general

I Binarization techniques to describe a

generic model with Boolean variables

[Antonucci et al., 2008]

1

1
P(x)

P(x)

.3

.7

P(X ) =

 .3

.7


.3

.6

.4 .7

K(X ) ≡ {P(X )|.4 ≤ P(x) ≤ .7}

EK [(2,−1)] = 0.2

EK [(2,−1)] = 1.1
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Credal sets (CSs) over Boolean variables
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Credal sets (CSs) over Boolean variables

I Boolean X , values in ΩX = {x , x}

I Precise P(X ) =

 p

1− p

 p ∈ [0, 1]

I Biggest CS? Whole simplex Kv (X )

I Kv (X ) has 2 extreme points

I True for any CS (convexity in 1D)

I Combinatorial approach appealing!
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But if |ΩX | > 2 . . .

No bounds on the number of extreme points!

E.g., ternary X with ΩX = {win, draw , loss}

P(win)

P(draw)

P(loss)

K(X ) = CH



.90

.05

.05

 ,

.80

.05

.15

 ,

.20

.20

.60

 ,

.10

.40

.50

 ,

.05

.80

.15
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.20

.70

.10




Compute bounds on probabilities
P(win) ∈ [.05, .90] P(draw) ∈ [.05, .80] P(loss) ∈ [.05, .60]

K(X ) = CH
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 ,

.05
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.15

 ,

.15

.80

.05

 ,

.35

.05

.60
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.05
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The induced CS is larger

CSs from intervals not fully general
P(X )/P(X ) note expressive enough

[Quique]
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Exercise #2 (ex2.r)

1. Brazil winning the Wolrd Cup?

As an imprecise Brazilian, Cassio’s probs are .4 ≤ P(win) ≤ .7
The gamble is: +2EUR if Brazil wins and pay -1EUR if not

Cassio’s lowest (selling) and upper (buying) price?

2. Can you find a gamble whose lower expectation is different

for the two credal sets considered in the previous slide?

And an indicator?
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Multivariate models

I 8 “Bayesian” physicians,

each assessing Pj(S ,C )

j Pj (s, c) Pj (s, c) Pj (s, c) Pj (s, c)

1 2/16 2/16 3/16 9/16

2 2/16 2/16 6/16 6/16

3 3/16 1/16 3/16 9/16

4 3/16 1/16 6/16 6/16

5 4/16 4/16 2/16 6/16

6 4/16 4/16 4/16 4/16

7 6/16 2/16 2/16 6/16

8 6/16 2/16 4/16 4/16

I No second order information?

Be cautious, take convex hull

K(S ,C) = CH {Pj(S ,C)}8
j=1

Two Boolean variables

Smoker, Lung Cancer

(s, c)

(s, c)

(s, c)

(s, c)

3D projection of a 4D object

P(s, d) = 1− . . .
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Marginalization in multivariate CSs

I Prob of cancer based on P(S ,C )? This is a marginalization

P(c) = P(s, c) + P(s, c) [e.g., P1(c) = 5
16 ]

I Based on K (S ,C )? Just the same (but elementwise)

K(C) =

P′(C)

∣∣∣∣∣∣∣
P′(c) = P(s, c) + P(s, c) ∀c

∀P(S ,C) ∈ K(S ,C)


I In practice? Marginalize only extremes and take the convex hull!

K(C) = CH

P′(C)

∣∣∣∣∣∣∣
P′(c) = P(s, c) + P(s, c) ∀c

∀P(S ,C) ∈ ext[K(S ,C)]


I This is used to implement EK(C) [e.g., P(c) = 5

16 P(c) = 10
16 ]
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Conditioning in multivariate CSs

I Given P(S ,C ), prob of cancer for smokers? Conditioning!

If P(s) > 0, Bayes’ rule says P(c |s) = P(s,c)
P(s) [e.g., P1(c |s) = .5]

I Given K (S ,C )? Generalized Bayes’ rule! [Quique] [Walley, 1991]

Just the same (but elementwise)

K(C |s) =

P′(C |s)

∣∣∣∣∣∣ P′(c|s) = P(s,c)
P(s)

∀c

∀P(S,C) ∈ K(S ,C)


I In practice? Condition the extremes and take the convex hull

K(C |s) = CH

P′(C |s)

∣∣∣∣∣∣ P′(c|s) = P(s,c)
P(s)

∀c

∀P(S ,C) ∈ ext[K(S ,C)]

 [e.g., P(c|s) = 3
4

]

I BR requires P(s) > 0, for GBR this corresponds to P(s) > 0

P(s) > 0 is ok too: ignore a P if P(s) = 0 (regular extension)

I K (C |S) is a collection of CSs (one ∀ possible conditioning event)
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Back to the joint (marginal extension)

I Precise case: P(s, c) = P(c |s) · P(s) for each joint state

P(S ,C ) := P(C |S)⊗ P(S)

I Imprecise case? Given K (C |S) and K (S) build a joint CS

Elementwise combination

K(C |S)⊗ K(X ) :=

{
P′(S ,C)

∣∣∣∣∣ P′(s, c) = P(c|s) · P(s)

∀(s, c) ∀P(S ,C) ∈ K(S,C)

}
I ⊗ in practice? Combining (all combinations) of the extremes + CH

I A round trip: start from K (S ,C ), compute K (C |S) and K (S),

then K ′(C ,S) = K (C |S)⊗ K (S)

If K (C ,S) ≡ K ′(C ,S), K (C ) and K (C |S) jointly coherent

In general only K (C ,S) ⊆ K ′(C ,S) (in our example coincide)

I ⊗ + marg ⇒ (set-)valuation algebra [Kohlas][Mauá et al., 2012]
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Exercise #3 (ex3.r)

I Consider the CS induced by the (convexification of the) 8 physicians

1. Compute K(C), K(S), and K(C |S),

2. Check K(S ,C) = K(S)⊗ K(C |S)
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(The) Independence (Zoo)

I A guy (working for Marlboro) says: “C and S are independent”

I He’s a precise guy [he has his own P(C ,S)] What does it means?

Stochastic independence Stochastic irrelevance

⇔P(c) · P(s) = P(c , s) ∀c , s P(C |s) = P(c) ∀s

I But the Marlboro guy is imprecise! [he has K (C ,S)]

Strong independence Epistemic irrelevance

⇒P(c) · P(s) = P(c , s) ∀c , s
∀P(C ,S) ∈ ext[K (C ,S)] (strong)

∀P(C ,S) ∈ K (C ,S) ⇒ non-convex

K (C |s) = K (c) ∀s

Strong independence is symmetric, epistemic irrelevance is not

Every notion of independence/irrelevance has a conditional version
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Extensions based on independence

I Precise marginals P(C ) and P(S) [P(c) = 1
2 and P(s) = 3

8 ]

I Enough to build a consistent P(S ,C ) s.t. C and S (stoch) indep

I Imprecise marginals K (C ) and K (S) [P(c) ∈ [ 5
16 ,

5
8 ], P(s) ∈ [ 1

4 ,
1
2 ]]

I Build the smallest joint CS consistent with K (C ) and K (S) s.t.

I C and S are strongly independendent (strong extension)

I S is epistemically irrelevant to C (epistemic extension)
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Building the strong extension

I Extreme points of the extension
are combinations of the
extreme points of the marginals
[Antonucci, 2008]

ext[K(C)] = CH

{[
5

16
13
16

]
,

[
5
8
3
8

]}

ext[K(S)] = CH

{[
1
4
3
4

]
,

[
1
2
1
2

]} (c, s)

(s, c)

(s, c)

(s, c)

KSE (C , S) = CH




5

64
13
64
15
64
39
64

 ,


10
64
6

64
30
64
18
64

 ,


10
64
26
64
10
64
26
64

 ,


20
64
12
64
20
64
12
64
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Building the epistemic extension

I Irrelevance by linear constraints

[Mauá et al., 2014]

I 5
16

= P(c) ≤ P(c|s) ≤ P(c) = 5
8

⇒ 5
16
· P(s) ≤ P(s, c) ≤ 5

8
· P(s)

Where P(s) = P(c, s) + P(c, s)

I Likewise for P(c|s)

I Don’t forget 5
16
≤ P(c) ≤ 5

8
and

1
4
≤ P(s) ≤ 1

2

I strong ⊆ epistemic extension

I More extreme points: combinatorial

approach less appealing

I Use previsions or desirable gambles

[Gert & Jasper]

(0,1,0,0)

(0,0,1,0)

(1,0,0,0)

(0,0,0,1)
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Exercise #4 (ex4.r)

1. Compute KSE (S ,C )

2. Compute KEE (S ,C )
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Multivariate models with independence

I A third Boolean variable: X-Rays to reveal lung cancer

I For non-Marlboro people too given cancer no link smoke/X-rays

I IP language: given C , S and R strongly independent

I Marginal extension (iterated two times)

K (S ,C ,R) = K (R|S ,C )⊗ K (S ,C ) = K (R|S ,C )⊗ K (C |S)⊗ K (S)

I Independence implies irrelevance: given C , S irrelevant to X

K (S ,C ,R) = K (R|C )⊗ K (C |S)⊗ K (S)

I Global model decomposed in 3 “local” models

I A graphical model! Independence make specification compact

Smoker Cancer X-Rays

K(C |S)K(S) K(R|C)
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Strong extension with conditional independence

I 3 “local” K (S), K (C |S), K (R|C ) + indep statement

I K (R|C ) s.t. P(r |c) ∈ [.9, .95] P(¬r |¬c) ∈ [.9, .95]

I KSE (S ,C ,R) := K (S)⊗ K (C |S)⊗ K (R|S)

the smallest consistent CS satisfying independence

I This generalizes the notion of strong extension

I ext[KSE (S ,C ,R)]? Combination of the local extreme points

I 2 · 4 · 4 = 32 points (some of them in the convex hull)

I number of extreme points exponential wrt the number of variables
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Exact inference: brute-force combinatorial approach

I Demo inference in the trivariate model: P(r)?

I Inference w.r.t. to the strong extension KSE (S ,C ,R)

P(r) = minP(S,C,R)∈KSE (S,C,R) [P(s, c, r) + P(s, c, r) + P(s, c, r) + P(s, c, r)]

I Linear problem (in the joint space): solution on an extreme point

P(r) = minP(S,C,R)∈ext[KSE (S,C,R)] [P(s, c, r) + P(s, c, r) + P(s, c, r) + P(s, c, r)]

P(r) = mini=1,...,32 [Pi (s, c, r) + Pi (s, c, r) + Pi (s, c, r) + Pi (s, c, r)] = .288125

I Two levels of complexity:

I Bayesian: exponential # number of sums

I Credal: exponential # number of extreme points
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Exact inference: multilinear optimization

I Linearly constrained optimization of a multilinear function

P(r) = min 1
4
≤P(s)≤ 1

2
1
2
≤P(c|s)≤ 3

4
, 1

4
≤P(c|s)≤ 1

2
1

100
≤P(r|c)≤ 1

10
, 9

10
≤P(r|c)≤ 99

100

∑
s,c [P(s) · P(c|s) · P(r |c)]

I Multilinear solvers can be used,

but the problem has degree equal to the number of variables

I Make it bilinear (i.e., degree=2) by (symbolic) variable elimination
[de Campos & Cozman, 2008]

P(r) = minP(c)=
∑

s P(s)·P(c|s)
P(c)=

∑
s P(s)·P(c|s)
...

∑
c [P(r |c) · P(c)]

I Write the problem in AMPL and solve it with CPLEX

I an “elimination” order over the variable is needed
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Linearizing the multilinear task

I Additional precise constraints for “local” probs (not for R)

I E.g., P(s) = 1
4
, P(c|s) = 3

4
P(c|s) = 1

4

P′(r) = min
P(s)= 1

4
,P(c|s)= 3

4
,P(c|s)= 1

4
9

10
≤P(r|c)≤ 99

100
, 9

10
≤P(r|c)≤ 99

100

∑
s,c [P(s) · P(c|s) · P(r |c)] = .34375

I More constraints ⇒ inner approx P ′(r) ≥ P(r)

I The solution gives me extreme points for S , give the freedom to C !

I Iterative approximate procedure [Antonucci et al., 2013]
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Interval propagation

I P(r) = minP(c)

∑
r P(r |c) · P(c)

I P(c) = minP(s)

∑
s P(c|s) · P(s) and P(c) = maxP(s)

∑
s P(c|s) · P(s)

I Exact for Boolean variables [Zaffalon],

(very) approximate (outer) in general [Tessem]

P(c) = minP(S)∈ext[K(S)] P(s) · P(c|s) + [1− P(s)] · P(c|s) =

= k + minP(S)∈ext[K(S)] P(s)[P(c|s)− P(c|s)]

As 1
4

= P(c|s) < P(c|s) = 1
2

,

the minimum is achieved when P(s) = 1
4

(minimum value)

We have P(c) = 0.3125 (exact!)
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Exercise

1. Compute P(r) by brute-force combinatorial approach

2. Approximate P(r) by linearizing the multilinear task
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Probabilistic Graphical Models

aka Decomposable Multivariate Probabilistic Models

(whose decomposability is induced by independence )

X1 X2 X3

X4 X5

X6 X7 X8

global model
φ(X1,X2,X3,X4,X5,X6,X7,X8)

local model
φ(X1,X2,X4)

local model
φ(X2,X3,X5)

local model
φ(X4,X6,X7)

local model
φ(X5,X7,X8)

φ(X1, X2, X3, X4, X5, X6, X7, X8) = φ(X1, X2, X4) ⊗ φ(X2, X3, X5) ⊗ φ(X4, X6, X7) ⊗ φ(X5, X7, X8)

directed graphs

Bayesian/credal networks
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Probabilistic Graphical Models

aka Decomposable Multivariate Probabilistic Models

(whose decomposability is induced by independence )

X1 X2 X3

X4 X5

X6 X7 X8

global model
φ(X1,X2,X3,X4,X5,X6,X7,X8)

local model
φ(X1,X2,X4)

local model
φ(X2,X3,X5)

local model
φ(X4,X6,X7)

local model
φ(X5,X7,X8)

φ(X1, X2, X3, X4, X5, X6, X7, X8) = φ(X1, X2, X4) ⊗ φ(X2, X3, X5) ⊗ φ(X4, X6, X7) ⊗ φ(X5, X7, X8)

directed graphs

Bayesian/credal networks
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Probabilistic Graphical Models

aka Decomposable Multivariate Probabilistic Models

(whose decomposability is induced by independence )

X1 X2 X3

X4 X5

X6 X7 X8

global model
φ(X1,X2,X3,X4,X5,X6,X7,X8)local model

φ(X1,X2,X4)
local model
φ(X2,X3,X5)

local model
φ(X4,X6,X7)

local model
φ(X5,X7,X8)

φ(X1, X2, X3, X4, X5, X6, X7, X8) = φ(X1, X2, X4) ⊗ φ(X2, X3, X5) ⊗ φ(X4, X6, X7) ⊗ φ(X5, X7, X8)

directed graphs

Bayesian/credal networks
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Markov Condition
I Probabilistic model over set of variables (X1, . . . ,Xn)

in one-to-one correspondence with the nodes of a graph

Undirected Graphs

X and Y are independent given Z

if any path between X and Y

containts an element of Z

Directed Graphs

Given its parents, every node is independent of its

non-descendants non-parents

X and Y are d-separated by Z if, along every path between

X and Y there is a W such that either W has converging

arrows and is not in Z and none of its descendants are in Z,

or W has no converging arrows and is in Z

X

Z1 Z2

Y

X

Z1 Z2

Y



Scheduling Motivations Computations with credal sets IPGMs Hypothesis Testing Learning Experts

Bayesian networks [Pearl, 1986]

I Set of categorical variables X1, . . . ,Xn

I Directed acyclic graph

I conditional (stochastic) independencies

according to the Markov condition:

“any node is conditionally independent

of its non-descendents given its parents”

I A conditional mass function for each node

and each possible value of the parents

I {P(Xi |pa(Xi )) ,∀i = 1, . . . , n , ∀pa(Xi ) }

I Defines a joint probability mass function

I P(x1, . . . , xn) =
∏n

i=1 P(xi |pa(Xi ))

X1

X2 X3

X4

High-Temperature

Spain-Win

Goalkeeper’s

fit

Attackers’

fit

E.g., given temperature,

fitnesses independent

P(X1)

P(X3|x1)P(X2|x1)

P(X4|x3, x2)
P(x1, x2, x3, x4) =

P(x1)P(x2|x1)P(x3|x1)P(x4|x3, x2)
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Bayesian network - simple example - bn1.txt

library(bnlearn)

source(’my.bn.inference.r’)

net = model2network("[x1][x2|x1][x3|x1][x4|x2:x3]")

cpt1.x1 = matrix(c(0.7, 0.3), ncol = 2,

dimnames = list(NULL, c(’true’, ’false’)))

cpt1.x2 = c(0.1, 0.9, 0.3, 0.7)

dim(cpt1.x2) = c(2, 2)

dimnames(cpt1.x2) = list("x2" = c("true", "false"),

"x1" = c("true", "false"))

cpt1.x3 = c(0.5, 0.5, 0.2, 0.8)

dim(cpt1.x3) = c(2, 2)

dimnames(cpt1.x3) = list("x3" = c("true", "false"),

"x1" = c("true", "false"))

cpt1.x4 = c(0.9, 0.1, 0.5, 0.5, 0.4, 0.6, 0.1, 0.9)

dim(cpt1.x4) = c(2, 2, 2)

dimnames(cpt1.x4) = list("x4" = c("true", "false"),

"x2" = c("true", "false"),

"x3" = c("true", "false"))
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Bayesian network - simple example - bn2.txt
net.1 = custom.fit(net, dist = list(x1=cpt1.x1,

x2=cpt1.x2, x3=cpt1.x3, x4=cpt1.x4))

query=rep(NA,length(net.1))

names(query) <- names(net.1)

query[2]=’false’

res <- my.bn.inference(net.1,query)

query[1]=’true’

res <- my.bn.inference(net.1,query)

query[2]=NA

res <- my.bn.inference(net.1,query)

evidence=rep(NA,length(net.1))

names(evidence) <- names(net.1)

evidence[4]=’true’

res <- my.bn.inference(net.1,query,evidence)

evidence[4]=’false’

res <- my.bn.inference(net.1,query,evidence)

query[1]=’false’

res <- my.bn.inference(net.1,query,evidence)
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Updating Bayesian networks

I Conditional probs for a variable of interest Xq given

observations XE = xE

I Updating Bayesian nets is NP-hard

(fast algorithms for polytrees)

P(xq|xE ) =
P(xq, xE )

P(xE )
=

∑
x\{xq,xE}

∏n
i=1 P(xi |πi )∑

x\{xE}
∏n

i=1 P(xi |πi )

XE

Xq

P(xq |xE ) = .38
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Credal networks [Cozman, 2000]

I Generalization of BNs to imprecise probabilities

I Credal sets instead of prob mass functions

{P(Xi |pa(Xi ))} ⇒ {K (Xi |pa(Xi ))}
I Strong (instead of stochastic) independence

in the semantics of the Markov condition (We will

talk about credal nets with strong independence,

because it has been around for more time, so we

have more applications for it.)

I Convex set of joint mass functions

K (X1, . . . ,Xn) = CH
{
P(X1, . . . ,Xn)

}
P(x1, . . . , xn) =

∏n
i=1 P(xi |pa(Xi ))

∀P(Xi |pa(Xi )) ∈ K(Xi |pa(Xi ))

∀i = 1, . . . , n ∀pa(Xi )

I Every conditional mass function takes values

in its credal set independently of the others

CN ≡ (exponential) number of BNs

X1

X2 X3

X4

High-Temperature

Spain-Win

Goalkeeper’s fit

Attackers’

fit

K(X1)

K(X3|x1)K(X2|x1)

K(X4|x3, x2)

E.g., K(X1) defined by

constraint P(x1) > .7,

very likely to be warm
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Credal network - simple example - cn1.txt

source(’my.cn.inference.r’)

cpt2.x1 = matrix(c(1, 0), ncol = 2,

dimnames = list(NULL, c(’true’, ’false’)))

# In this part of the talk, we use a very simplistic

# representation of binary credal networks:

#

# Two BNs, each one gives one of the vertices of

# each local credal set

net.2 = custom.fit(net, dist = list(x1=cpt2.x1,

x2=cpt1.x2, x3=cpt1.x3, x4=cpt1.x4))

# So net.2 is precise apart from variable x1, which

# has 0.7 <= P(x1) <= 1
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Updating credal networks

I Conditional probs for a variable of interest Xq given

observations XE = xE

I Updating Bayesian nets is NP-hard

(fast algorithms for polytrees)

P(xq|xE ) =
P(xq, xE )

P(xE )
=

∑
x\{xq,xE}

∏n
i=1 P(xi |πi )∑

x\{xE}
∏n

i=1 P(xi |πi )

I Updating credal nets is NPPP-hard,

NP-hard on polytrees [Mauá et al.]

Easy in trees under epistemic irr. [de Cooman et

al.]

P(xq|xE ) = min
P(Xi |πi )∈K(Xi |πi )

i=1,...,n

∑
x\{xQ ,xE}

∏n
i=1 P(xi |πi )∑

x\{xQ}
∏n

i=1 P(xi |πi )

XE

Xq
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Credal network - simple updating example - cn2.txt

source(’my.cn.inference.r’)

cpt2.x1 = matrix(c(1, 0), ncol = 2,

dimnames = list(NULL, c(’true’, ’false’)))

net.2 = custom.fit(net, dist = list(x1=cpt2.x1,

x2=cpt1.x2, x3=cpt1.x3, x4=cpt1.x4))

query=rep(NA,length(net.1))

names(query) <- names(net.1)

query[2]=’false’

res <- my.cn.inference(net.1,net.2,query)

query[1]=’true’

res <- my.cn.inference(net.1,net.2,query)

cat(’Query p(’,res$query,’|’,res$evidence,

’) -- interval result: [’,res$min.p,

’,’,res$max.p,’]\n’)
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Medical diagnosis by CNs (a simple example of)

I Five Boolean vars

I Conditional

independence relations

given by a DAG

I Elicitation of the local

(conditional) CSs

I This is a CN

specification

I The strong extension

K (S ,C ,B,X ,D) =

CH

P(S ,C ,B,X ,D)

∣∣∣∣∣∣∣∣
P(s, c , b, x , d)=P(s)P(c |s)P(b|s)P(x |c)P(d |c , b)

P(S) ∈ K (S)

P(C |s) ∈ K (C |s),P(C |¬s) ∈ K (C |¬s)

. . .



Cancer Bronchitis

Smoker

DyspneaX-Rays

P(s)∈[.25, .50]

P(c|s)∈[.15, .40]
P(c|¬s) ∈ [.05, .10]

P(x |c) ∈ [.90, .99]
P(x |¬c) ∈ [.01, .05]

P(b|s) ∈ [.30, .55]
P(b|¬s) ∈ [.20, .30]

P(d |c, b) ∈ [.90, .99]

P(d |¬c, b) ∈ [.50, .70]

P(d |c,¬b) ∈ [.40, .60]
P(d |¬c,¬b) ∈ [.10, .20]

[EXE]
P(s, c, b, x , d) =?
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Asia network example - simpleasia1.txt
library(bnlearn)

net = model2network("[smoke][lung|smoke][bronc|smoke][xrays|lung][dysp|lung:bronc]")

cpt1.smoke = matrix(c(0.25, 0.75), ncol = 2,

dimnames = list(NULL, c(’true’, ’false’)))

cpt2.smoke = matrix(c(0.5, 0.5), ncol = 2,

dimnames = list(NULL, c(’true’, ’false’)))

cpt1.lung = c(0.15, 0.85, 0.05, 0.95)

dim(cpt1.lung) = c(2, 2)

dimnames(cpt1.lung) = list("lung" = c("true", "false"),

"smoke" = c("true", "false"))

cpt2.lung = c(0.4, 0.6, 0.1, 0.9)

dim(cpt2.lung) = c(2, 2)

dimnames(cpt2.lung) = list("lung" = c("true", "false"),

"smoke" = c("true", "false"))

cpt1.bronc = c(0.3, 0.7, 0.2, 0.8)

dim(cpt1.bronc) = c(2, 2)

dimnames(cpt1.bronc) = list("bronc" = c("true", "false"),

"smoke" = c("true", "false"))

cpt2.bronc = c(0.55, 0.45, 0.3, 0.7)

dim(cpt2.bronc) = c(2, 2)

dimnames(cpt2.bronc) = list("bronc" = c("true", "false"),

"smoke" = c("true", "false"))

cpt1.xrays = c(0.9, 0.1, 0.01, 0.99)

dim(cpt1.xrays) = c(2, 2)

dimnames(cpt1.xrays) = list("xrays" = c("true", "false"),

"lung" = c("true", "false"))

cpt2.xrays = c(0.99, 0.01, 0.05, 0.95)

dim(cpt2.xrays) = c(2, 2)

dimnames(cpt2.xrays) = list("xrays" = c("true", "false"),

"lung" = c("true", "false"))
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Asia network example - simpleasia2.txt

cpt1.dysp = c(0.9, 0.1, 0.5, 0.5, 0.4, 0.6, 0.1, 0.9)

dim(cpt1.dysp) = c(2, 2, 2)

dimnames(cpt1.dysp) = list("dysp" = c("true", "false"),

"lung" = c("true", "false"), "bronc" = c("true", "false"))

cpt2.dysp = c(0.99, 0.01, 0.7, 0.3, 0.6, 0.4, 0.2, 0.8)

dim(cpt2.dysp) = c(2, 2, 2)

dimnames(cpt2.dysp) = list("dysp" = c("true", "false"),

"lung" = c("true", "false"), "bronc" = c("true", "false"))

net.1 = custom.fit(net, dist = list(smoke=cpt1.smoke,

lung=cpt1.lung, bronc=cpt1.bronc, xrays=cpt1.xrays, dysp=cpt1.dysp))

net.2 = custom.fit(net, dist = list(smoke=cpt2.smoke,

lung=cpt2.lung, bronc=cpt2.bronc, xrays=cpt2.xrays, dysp=cpt2.dysp))

query=rep(’true’,length(net.1))

names(query) <- names(net.1)

source(’my.cn.inference.r’)

res <- my.cn.inference(net.1,net.2,query)

cat(’Query p(’,res$query,’|’,res$evidence,

’) -- interval result: [’,res$min.p,’,’,res$max.p,’]\n’)
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Asia network example - simpleasia3.txt
query=rep(NA,length(net.1))

names(query) <- names(net.1)

query[’lung’] <- ’true’

evi=rep(NA,length(net.1))

names(evi) <- names(net.1)

evi[’dysp’] <- ’true’

res <- my.cn.inference(net.1,net.2,query,evi)

cat(’Query p(’,res$query,’|’,res$evidence,

’) -- interval result: [’,res$min.p,’,’,res$max.p,’]\n’)

evi[’bronc’] <- ’true’

res <- my.cn.inference(net.1,net.2,query,evi)

cat(’Query p(’,res$query,’|’,res$evidence,

’) -- interval result: [’,res$min.p,’,’,res$max.p,’]\n’)

evi[’bronc’] <- ’false’

evi[’xrays’] <- ’true’

res <- my.cn.inference(net.1,net.2,query,evi)

cat(’Query p(’,res$query,’|’,res$evidence,

’) -- interval result: [’,res$min.p,’,’,res$max.p,’]\n’)

evi[’smoke’] <- ’true’

res <- my.cn.inference(net.1,net.2,query,evi)

cat(’Query p(’,res$query,’|’,res$evidence,

’) -- interval result: [’,res$min.p,’,’,res$max.p,’]\n’)
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Asia network example - simpleasia4.txt

evi=rep(NA,length(net.1))

names(evi) <- names(net.1)

evi[’bronc’] <- ’false’

res <- my.cn.inference(net.1,net.2,query,evi)

cat(’Query p(’,res$query,’|’,res$evidence,

’) -- interval result: [’,res$min.p,’,’,res$max.p,’]\n’)

evi[’smoke’] <- ’true’

res <- my.cn.inference(net.1,net.2,query,evi)

cat(’Query p(’,res$query,’|’,res$evidence,

’) -- interval result: [’,res$min.p,’,’,res$max.p,’]\n’)

evi[’bronc’] <- ’true’

res <- my.cn.inference(net.1,net.2,query,evi)

cat(’Query p(’,res$query,’|’,res$evidence,

’) -- interval result: [’,res$min.p,’,’,res$max.p,’]\n’)

evi[’dysp’] <- ’true’

res <- my.cn.inference(net.1,net.2,query,evi)

cat(’Query p(’,res$query,’|’,res$evidence,

’) -- interval result: [’,res$min.p,’,’,res$max.p,’]\n’)
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Non-separately specified CNs

I Constraints among different conditional mass

functions of a CN

I Explicit enumeration of the relative BNs
I Auxiliary parent selecting the conditional

probabilities [Cano, Cano, Moral, 1994]

with a vacuous prior

I “Extensive” specification
I Constraints among conditional mass

functions of the same variable
I Each CPT takes values from a set of tables

an auxiliary parent selecting the tables

T

X

pa(X )

P(X |pa(X ), T = tj )
=

Pj (X |pa(X ))

Ti
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Qualitative Probabilistic Networks

I No numerical specifications.

I Qualitative relations: A influences B positively if

P(b|a,C ) ≥ P(b|¬a,C ) for every C . Each arc is

marked with a sign: +, −, 0 or ?.

I Query: does it hold P(xq|xE ) ≥ P(xq) for every P?

I It can be solved by sign propagation ideas. The basic

idea is that influences are “transitive”.

I ∀P : P(xq|xE ) ≥ P(xq)? Yes, it is true!

I ∀P : P(xq|xE ) ≥ P(xq)? Now it is not!

A C

B

XE

Xq

+ +

− −

+

+ +

− −
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Qualitative Probabilistic Networks

I QPNs are a simple type of credal networks.

I QPNs: more “uncertainty” does not mean inferences are harder!

I Mix of QPNs with numerical parameters becomes the Semi-QPNs.

They are as powerful as general credal networks.

I Learning the parameters of a Bayesian networks can be seen as a

certain optimization over QPNs/credal networks.
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Semi-Qualitative Probabilistic Networks

Cancer Bronchitis

Smoker

DyspneaX-Rays

Aux{1, 2, 3}AuxA’ux

P(a′)∈ [0, 1] P(a)∈ [0, 1] P(s)∈[0, .50]

P(c|s, a, a′) = 1

P(c|¬s, a, a′) = 0

P(c|s, a,¬a′) = 0

P(c|¬s, a,¬a′) = 0

P(c|s,¬a,A′) = 1
P(c|¬s,¬a,A′) = 1

P(ai )∈ [0, 1] P(s)∈[0, .50]

P(c|s, a1) = 1

P(c|¬s, a1) = 0

P(c|s, a2) = 0

P(c|¬s, a2) = 0

P(c|s, a3) = 1
P(c|¬s, a3) = 1

P(s) ≤ P(¬s)

P(c|s) ≥ P(c|¬s)

P(x |c) ∈ [.90, .90]
P(x |¬c) ∈ [.01, .01]

P(b|s) ∈ [.30, .30]
P(b|¬s) ∈ [.20, .20]

P(d |c, b) ∈ [.90, .90]

P(d |¬c, b) ∈ [.50, .50]

P(d |c,¬b) ∈ [.40, .40]
P(d |¬c,¬b) ∈ [.10, .10]
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Semi-Qualitative Probabilistic Networks

I Can we represent this network using the same software as before?

Yes!

I Can we compute inferences using the software as before?

I P(c |b, x) is obtained by a fractional linear optimization.

I maxP(P(c |b)− P(c)) > 0 ⇐⇒ maxP(P(c , b)− P(c) · P(b)) > 0

(assuming P(b) > 0) is a non-linear query.

I Non-linear inference might need additional effort.
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Motivations

I Hypothesis tests are ubiquitous. Decision making, scientific
discoveries, feature selection in many fields (e.g., medical,
demographic, environmental, etc.) are based on the results of
hypothesis tests.

I In case of scarce prior knowledge of the distributions of interest,
nonparametric tests are preferred (robust to outliers, do not
assume normality of the data,...)

I Frequentist procedures (null hypothesis significance test) are usually
adopted. However

I Frequentist hypothesis tests cannot assess evidence for the null
hypothesis.

I Lack of a sound criterion for deciding Type I error
(usually 0.05 or 0.01).

I the p-value and thus the outcome of the test depend on the
intention of the person who has collected the data.
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Motivations

I A Bayesian nonparametric approach evaluates the posterior

probability of the alternative hypotheses;

I This allows taking decisions which minimize the expected loss once

the costs of type I and type II errors are specified.

I The outcome of the test depends only on the prior belief and on the

collected data.

Why should we leave nonparametric hypothesis tests to frequentist

procedures?
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The Dirichlet Process

I The Dirichlet process (DP) is one of the most popular Bayesian

nonparametric models.

I In Ferguson’s seminal paper it is used to estimate:
I distribution function, mean, quantiles, variance;
I P(X ≤ Y ) → Mann-Whitney statistic;
I survival function → Kaplan-Meier estimator (Susarla, Van Ryzin

and Blum);
I measure of bivariate dependence → Kendall’s tau (Dalal and

Phadia);
I ...

I DP provides Bayesian justification of traditional nonparametric

estimators.

I Can be used to perform traditional tests in a Bayesian way.
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The Dirichlet Process - definition

I The DP is a way of assigning a probability distribution over

probability distributions.

I Let the probability measure P be the Dirichlet process Dp(s, g0):

I s = prior strength (scalar);

I g0 = prior base probability measure on X (infinite dimensions).

I Then, given a finite partition B1,B2, . . . ,Bm of X,

(P(B1), . . . ,P(Bm)) ∼ Dir(s g0(B1), . . . , s g0(Bm)).
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The Dirichlet Process on R
I Sample space X = R;

I P ∼ Dp(s, g0);

P(X < x) = P(B1) ∼ Dir(sg0(B1), sg0(B2))

∼ Beta(sg0(B1), s[1− g0(B1)]) =⇒ E [P(X < x)] = g0(B1)

g0 represents our prior belief about the shape of P.
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The Dirichlet Process on R

Let X1,X2, . . . be n samples from P

Prior: P(X < x) ∼ Dir(sg0(B1) , sg0(B2) )

Posterior: P(X < x) ∼ Dir(sg0(B1) + nl , sg0(B2) + ng )

=⇒ E [P(X < x)] =
sg0(B1) + nl

s + n
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The Dirichlet Process on R - Conjugacy

Prior: P ∼ Dp(s, g0)

Posterior: P ∼ Dp(s + n,
s

s + n
g0 +

1

n + s

n∑
i=1

δXi︸ ︷︷ ︸
gn

)
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Prior elicitation

In Bayesian analysis the problem is how to select s and g0.

Note that g0 is a probability measure and, thus, very detailed information is

needed for its elicitation.

In case of lack of prior information:

I s → 0 (Ferguson, Rubin);

I s,G0 are selected using empirical Bayesian approaches;

I hierarchical prior on s,G0.



Scheduling Motivations Computations with credal sets IPGMs Hypothesis Testing Learning Experts

Near-ignorance solution: Imprecise Dirichlet Process

Keep s fixed and let g0 vary in the set of all probability measures:

IDP : {Dp(s, g0), g0 ∈ P}

E[P(X < x)] = g0(−∞, x ] = 0 E[P(X < x)] = g0(−∞, x ] = 1

0 ≤ E[P(X < x)] ≤ 1

No prior information about P(X < x)
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Imprecise Dirichlet Process - Learning

A posteriori:

LOWER UPPER

nl
s + n

< E [P(X < x)] <
s + nl
s + n
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Imprecise Dirichlet Process - Sampling

g0 = δX0 ⇒ gn is discrete

Samples P(k) from Dp(s + n, gn) have the form

P(k) = w0δX0 +
n∑

i=1

wiδXi

with (w0,w1, . . . ,wn) ∼ Dir(s,

n︷ ︸︸ ︷
1, . . . , 1)
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Sign test

X n = {X1, . . . ,Xn}: sequence of observations

nl : # obervations Xi < 0 ng : # obervations Xi ≥ 0

H0 : P(X < 0) ≤ 0.5 H1 : P(X < 0) > 0.5

Lower Upper

P(X < 0) ∼ Beta(nl , s + ng ) P(X < 0) ∼ Beta(s + nl , ng )

Prob(H1) =
∫ 1

0.5
Beta(nl , s + ng ) Prob(H1) =

∫ 1

0.5
Beta(s + nl , ng )

Example:

nl = 5,

ng = 2,

s = 1
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The sign test - Decision making

L0: loss associated to action a1 (= accepting H1) if H0 is true

(Type I error)

L1: loss associated to action a0 (= accepting H0) if H1 is true

(Type II error)

Based on L0, L1 one chooses a1 (accept H1) if

Expected loss|a1 < Expected loss|a0

⇒ L0Prob(H0) < L1Prob(H1)

⇒ Prob(H1) >
L0

L0 + L1
= 1− α.

What if Prob(H1) > 1− α but Prob(H1) < 1− α?

The decision is prior-dependent. No robust decision can be taken.
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Advantages

Computational tractability: Sampling from the upper and lower posterior
distribution is easier than using stick breaking or other
sampling strategies specific to DP.

Robustness: When the IDP test is indeterminate the Wilcoxon test virtually
behaves as a random guesser (50% of the times issues H0 and
the other 50% H1).
The instances that are prior-dependent are somehow critical.
It makes sense to suspend the decisions in those instances.

Sensitivity analysis: The maximum value of s that gives a determinate decision
can be interpreted as a measure of robustness of the decision.
Even collecting s more observations I will not contradict that
decision.
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Wilcoxon rank-sum test

X n1 = {X1, . . . ,Xn1} ∼ PX

Y n2 = {Y1, . . . ,Yn2} ∼ PY

 sequences of observations from two populations

The aim is to test the equality of distributions for X and Y .

H0 : PX = PY H1 : PX 6= PY

It uses the linear rank statistic

U =

n1∑
i=1

n2∑
j=1

I{Xi<Yj}.

The distribution U under the null hypothesis can be computed by considering

all the possible random arrangements of the observations in X n1 and Y n2 .
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Bayesian rank-sum test

Note that U

n1n2
is the empirical estimate of P(X < Y )

We reformulate the hypothesis

H0 : P(X < Y ) ≤ 0.5 H1 : P(X < Y ) > 0.5

Assuming that PX ∼ Dp(s, g0x) and PY ∼ Dp(s, g0y ), we can the use the DP

to make inferences about

P(X < Y ) =

∫
PX (X < y)dPY (y)

as for instance E[P(X < Y )|X n1 ,Y n2 ]

and
Prob

[
P(X < Y ) > 0.5|X n1 ,Y n2

]
= Prob(H1).
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Imprecise rank-sum test - prior

PX ∼ Dp(s, g0x) PY ∼ Dp(s, g0y ),

g0x , g0y ∈ P

LOWER: E [P(X < Y )] = 0

UPPER: E [P(X < Y )] = 1
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Imprecise rank-sum test - prior

PX ∼ Dp(s, g0x) PY ∼ Dp(s, g0y ),

g0x , g0y ∈ P

LOWER: E [P(X < Y )] = 0

UPPER: E [P(X < Y )] = 1
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Imprecise rank-sum test - posterior

Which prior minimizes the probabiliy that X < Y ? Which prior maximizes the

probabiliy that X < Y ?

U

(s + n1)(s + n2)
< E[P(X < Y )|X n1 ,Y n2 ] <

U

(s + n1)(s + n2)
+

s(s + n1 + n2)

(s + n1)(s + n2)

P(X < Y ) ∼
∫

P
(k)
X (X < y)dP

(k′)
Y (y)

=

n1∑
i=0

n1∑
j=0

wXiwYj I{Xi<Yj}
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Imprecise rank-sum test - posterior

U

(s + n1)(s + n2)
< E[P(X < Y )|X n1 ,Y n2 ] <

U

(s + n1)(s + n2)
+

s(s + n1 + n2)

(s + n1)(s + n2)

P(X < Y ) ∼
∫

P
(k)
X (X < y)dP

(k′)
Y (y)

=

n1∑
i=0

n1∑
j=0

wXiwYj I{Xi<Yj}
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Imprecise rank-sum test - posterior

U

(s + n1)(s + n2)
< E[P(X < Y )|X n1 ,Y n2 ] <

U

(s + n1)(s + n2)
+

s(s + n1 + n2)

(s + n1)(s + n2)

P(X < Y ) ∼
∫

P
(k)
X (X < y)dP

(k′)
Y (y)

=

n1∑
i=0

n1∑
j=0

wXiwYj I{Xi<Yj}



Scheduling Motivations Computations with credal sets IPGMs Hypothesis Testing Learning Experts

Imprecise rank-sum test - posterior

U

(s + n1)(s + n2)
< E[P(X < Y )|X n1 ,Y n2 ] <

U

(s + n1)(s + n2)
+

s(s + n1 + n2)

(s + n1)(s + n2)
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∫
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(k)
X (X < y)dP
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Imprecise rank-sum test - posterior

U

(s + n1)(s + n2)
< E[P(X < Y )|X n1 ,Y n2 ] <

U

(s + n1)(s + n2)
+

s(s + n1 + n2)

(s + n1)(s + n2)

P(X < Y ) ∼
∫

P
(k)
X (X < y)dP

(k′)
Y (y)

=

n1∑
i=0

n1∑
j=0

wXiwYj I{Xi<Yj}
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Advantages

Computational tractability: Sampling from the upper and lower posterior
distribution is easier than using stick breaking or other
sampling strategies specific to DP.

Robustness: When the IDP test is indeterminate the Wilcoxon test virtually
behaves as a random guesser (50% of the times issues H0 and
the other 50% H1).
The instances that are prior-dependent are somehow critical.
It makes sense to suspend the decisions in those instances.

Sensitivity analysis: The maximum value of s that gives a determinate decision
can be interpreted as a measure of robustness of the decision.
Even collecting s more observations I will not contradict that
decision.

Asymptotic consistency: If X and Y have same median but different
distribution, then the Wilcoxon rank-sum test is not consistent
because its null hypothesis is PX = PY but the statistic is an
estimator of P(X < Y ) = 0.5.
The IDP rank-sum test is asymptotically consistent as a test
for P(X < Y ).
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Survival analysis: right censored data

I X = survival time; X̃ = censoring time

I Z = min(X , X̃ ); d = δZ=X

I (Zi , di ) = observation

POSTERIOR: P(X > x) ∼ Mixture of DP (Susarla, Van Ryzin)

H(z, d) = probability distribution of the bivariate rv (Z , d)

PRIOR: H(z, d) ∼ Dp(s,G(z, d))

POSTERIOR: H(z, d) ∼ Dp(s + n,
s

s + n
G(z, d) +

1

s + n

∑
δ(Zi ,di )

)

We can sample easily from the posterior distribution of H(z, d) H(k) −→ F (k)︸ ︷︷ ︸
Peterson, 1977



Scheduling Motivations Computations with credal sets IPGMs Hypothesis Testing Learning Experts

Application: numerical simulations
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Figure: Scenario B

Table: Type-I error (α = 0.05)

Log-rank Peto-Peto IDP (s = 0.25)
Scenario A 0.327 0.027 0.031
Scenario B 0.002 0.076 0.042

Log-rank test: assumes proportional hazard.

Generalized Wilcoxon rank-sum test: weights more early differences.

IDP test: Type-I error always < α.
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Application: real-world data

I Australian AIDS survival dataset (Ripley and Solomon, 1994).

I We consider five different pairs of groups of individuals and test whether survival
is shorter for the first than for the second group.

I According to Ripley and Solomon study:

I no difference between Male/Female and NSW/VIC regions,

I difference between No-drug/drug usage, and Blood/ Haemophilia
transmission.

I a difference was identified between QLD/NSW regions but it was declared
“obscure and requiring further investigation”.

Table: p-values (Log-rank and generalized Wilcoxon tests) and posterior probabilities (IDP test).

Group 1 Group 2 Log-rank Peto-Peto IDP (s = 0.25) smax

Male Female 0.182 (H0) 0.525 (H0) 0.579/0.732 (H0) 5.63

NSW VIC 0.228 (H0) 0.024 (H1) 0.911/0.920 (H0) 1.25

No Drug Drug 0.011 (H1) 0.019 (H1) 0.986/0.990 (H1) 3.13

Blood Haemoph. 0.046 (H1) 0.007 (H1) 0.991/0.996 (H1) 2.08

QLD NSW 0.046 (H1) 0.027 (H1) 0.927/0.967 ( I ) -
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Application: real-world data
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Conclusions

Near-ignorance Dirichlet Process based tests:

DP: the DP allows us to estimate the distribution of the data (no need of

assumptions as in the NHST).

Decision theory: the Bayesian approach allows us to formulate the hypothesis test as

a decision problem (loss based).

Flexibility: the IDP allows us to start the hypothesis test with very weak prior

assumptions (only s must be specified).

Robustness: the IDP has the advantage of producing an indeterminate outcome

when the decision is prior-dependent.
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The IDP statistical package

http://ipg.idsia.ch/software/IDP.php

The IDP project is still in progress:

I IDP based version of the Wilcoxon rank-sum test;
I IDP based version of the Wilcoxon signed-rank test;

I IDP based version of the sign test;

I IDP for analysis of survival data.

http://ipg.idsia.ch/software/IDP.php
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Learning credal sets from (few) data

I Learning from data about X

I Max lik estimate P(x) = n(x)
N

I Bayesian (ESS s = 2)
n(x)+st(x)

N

I Imprecise: set of priors (vacuous t)

n(x)

N + s
≤ P(x) ≤ n(x) + s

N + s

imprecise Dirichlet model

[Walley & Bernard]

I They a.s.l. and are coherent

I Non-negligible size of intervals only

for small N

(Bayesian for N →∞)

P(win)

P(draw)

P(loss)

1957: Spain vs. Italy 5 − 1

1973: Italy vs. Spain 3 − 2

1980: Spain vs. Italy 1 − 0

1983: Spain vs. Italy 1 − 0

1983: Italy vs. Spain 2 − 1

1987: Spain vs. Italy 1 − 1

2000: Spain vs. Italy 1 − 2

2001: Italy vs. Spain 1 − 0

n(win)

n(draw)

n(loss)

=

 4

1

3
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Estimation for a categorical variable

I Class C , with sample space ΩC = {c1, . . . , cm}.

I P(cj) = θj , θ = {θ1, . . . , θm}.

I n i.i.d. observations; n = {n1, . . . , nm}.

I Multinomial likelihood:

L(θ|n) ∝
m∏
j=1

θ
nj
j

I Max. likelihood estimator: θ̂j =
nj
n .
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Bayesian estimation: Dirichlet prior

I The prior expresses the beliefs about θ, before analyzing the data:

π(θ) ∝
k∏

j=1

θ
stj−1
j .

I s > 0 is the equivalent sample size, which can be regarded as a

number of hidden instances;

I tj is the proportion of hidden instances in category j .
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Posterior distribution

I Obtained by multiplying likelihood and prior:

π(θ|n) ∝
∏
j

θ
(nj+stj−1)
j

I Dir posteriors are obtained from Dir priors (conjugacy).

I Taking expectations:

P(cj |n, t) =
nj + stj
n + s



Scheduling Motivations Computations with credal sets IPGMs Hypothesis Testing Learning Experts

Example

I n=10, n1=4, n2=6, s=1.

I The posterior estimate is sensitive on the choice of the prior:

Prior 1 Prior 2

t1 = 0.5 t1 = 0.8

t2 = 0.5 t2 = 0.2

θ̂1 =
4 + 0.5

10 + 1
= 0.41 θ̂1 =

4 + 0.8

10 + 1
= 0.44

Uniform prior is the most common choice.
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Uniform prior looks non-informative...

I ... but its estimates depend on the sample space .

Sample space θ1, θ2 θ1, θ2, θ3

Data n1 = 4 n1 = 4

n2 = 6 n2 = 6

- n3 = 0

Estimate of θ1 θ̂1 =
4 + 1/2

10 + 1
= .41 θ̂1 =

4 + 1/3

10 + 1
= .39

I “Non-informative priors are a lost cause”

L. Wasserman, normaldeviate.wordpress.com

normaldeviate.wordpress.com
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Modelling prior-ignorance: the Imprecise Dirichlet Model

I The IDM is a convex set of Dirichlet prior.

I The set of admissible values for tj is:0 < tj < 1 ∀j∑
j tj = 1

I This is a model of prior ignorance : a priori nothing is known.
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Learning from data with the IDM

I An upper and a lower posterior expectation are derived for each

chance θj .

E (θj |n) = inf
0<tj<1

nj + stj
n + s

=
nj

n + s

E (θj |n) = sup
0<tj<1

nj + stj
n + s

=
nj + s

n + s

I Upper and lower expectations do not depend on the sample space.
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Example

I Binary variable, with n=10, n1=4, n2=6, s=1.

I The estimates of θ1 are:

Bayes Bayes IDM

(t1 = 0.5, t2 = 0.5) (t1 = 0.8, t2 = 0.2)

θ̂1 =
4 + 0.5

10 + 1
θ̂1 =

4 + 0.8

10 + 1

[
4

10 + 1
,

4 + 1

10 + 1

]

= .409 = .436 = [.363, .454]

I The interval estimate of the IDM comprises the estimates obtained

letting vary each ti within (0, 1).
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On the IDM

I The estimates are imprecise, being characterized by an upper and a

lower probability.

I They do not depend on the sample space.

I The gap between upper and lower probability narrows as more data

become available.

[Walley, 1996] [Bernard, 2009]
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Naive Bayes (NBC)

C

F1 F2
F3

I Naively assumes the features to be independent given the class.

I NBC is highly biased, but achieves good accuracy, especially on

small data sets, thanks to low variance [Friedman,1997].

I Learns from data the joint probability of class and features,

decomposed as the marginal probability of the classes and the

conditional probability of each feature given the class.
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Joint prior

I θc,f : the unknown joint probability of class and features, which we

want to estimate.

I Under naive assumption and Dirichlet prior, the joint prior is:

P(θc,f) ∝
∏
c∈ΩC

θst(c)
c

k∏
i=1

∏
f∈ΩFi

θ
st(f ,c)
(f |c) .

where t(f , c) is the proportion of hidden instances with C = c and

Fi = f .

I Let vector t collect all the parameters t(c) and t(f , c).

I Thus, a joint prior is specified by t.



Scheduling Motivations Computations with credal sets IPGMs Hypothesis Testing Learning Experts

Likelihood and posterior

I The likelihood is like the prior, with coefficients st(·) replaced by the

n(·).

L(θ|n) ∝
∏
c∈C

[
θn(c)
c

k∏
i=1

∏
f∈Fi

θ
n(f ,c)
(f |c)

]
.

I The joint posterior P(θc,f |n, t) is like the likelihood, with coefficients

n(·) replaced by st(·) + n(·).

I Once P(θc,f |n, t) is available, the classifier is trained.
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Issuing a classification

I The value of the features is specified as f = (fi , . . . , fk).

P(c |f) = P(c)
k∏

i=1

P(fi |c)

where

P(c) =
n(c) + st(c)

n + s

P(fi |c) =
n(fi , c) + st(fi , c)

nc + stc
.

I Prior-dependence : the most probable class varies with t.
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Credal classifiers

I Induced using a set of priors (credal set).

I They separate safe instances from prior-dependent ones.

I On prior-dependent instances: they return a set of classes

( indeterminate classifications ), remaining robust though less

informative.
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IDM over the naive topology

We consider a set of joint priors, factorized as:

Class :0 < t(c) < 1 ∀c ∈ Ωc∑
c t(c) = 1

Features given the class:


∑

f t(f , c) = t(c) ∀f , c

0 < t(f , c) < t(c) ∀f , c

I A priori, 0 < P(cj) < 1 ∀j .

I A priori, 0 < P(f |c) < 1, ∀c .
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Naive Credal Classifier (NCC)

I Uses the IDM to specify a credal set of joint distributions and

updates it into a posterior credal set.

I The posterior probability of class c ranges within an interval.

I Given feature observation f, class c ′ credal-dominates c ′′ if for

each posterior of the credal set:

P(c ′|f) > P(c ′′|f)
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NCC and prior-dependent instances

I Credal-dominance is checked by solving an optimization problem.

I NCC eventually returns the non-dominated classes:

I a singleton on the safe instances

I a set on the prior-dependent ones.

I The next applications shows the gain in reliability due to returning

indeterminate classifications on the prior-dependent instances.
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Texture recognition

I The OUTEX data sets (Ojala, 2002): 4500 images, 24 classes

(textiles, carpets, woods ..).
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Features: Local Binary Patterns (Ojala, 2002)

I The gray level of each pixel is compared with that of its neighbors,

resulting in a binary judgment (more intense/ less intense).

I Such judgments are collected in a string for each pixel.
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Local Binary Patterns (2)

I Each string is then assigned to a single category.

I The categories group similar strings: e.g., 00001111 is in the same

category of 11110000 for rotational invariance.

I There are 18 categories.

I For each image there are 18 features: the % of pixels assigned to

each category.
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Results (Corani et al., BMVC 2010)

I Accuracy of NBC: 92% (SVMs: 92.5%).

I NBC is highly accurate on the safe instances, but almost random on

the prior-dependent ones.

Safe Prior-dependent

Amount% 95% 5%

NBC: accuracy 94% 56%

NCC: accuracy 94% 85%

NCC: non-dom. classes 1 2.4
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Different training set sizes (II)

As n grows there is a decrease of both:

I the % of indet. classification;

I the number of classes returned when indeterminate.
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Naive Bayes + rejection option vs Naive Credal

I Rejection option: reject an instance (no classification) if the

probability of the most probable class is below a threshold p∗.

I Texture recognition: half of the prior-dependent instances classified

by naive Bayes with probability > 90%.

I Rejection rule is not designed to detect prior-dependent instances!
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Learning credal sets from (missing) data

I Coping with missing data?

I Missing at random (MAR)

P(O = ∗|X = x) indep of X Ignore

missing data

I Not always the case!

I Conservative updating

(de Cooman & Zaffalon) ignorance

about the process P(O|X ) as a

vacuous model

I Consider all the explanations (and

take the convex hull)

K(X )

P(win)

P(draw)

P(loss)

1957: Spain vs. Italy 5 − 1

1973: Italy vs. Spain 3 − 2

1980: Spain vs. Italy 1 − 0

1983: Spain vs. Italy 1 − 0

1983: Italy vs. Spain 2 − 1

1987: Spain vs. Italy 1 − 1

2000: Spain vs. Italy 1 − 2

2001: Italy vs. Spain 1 − 0

2003: Spain vs. Italy ∗ − ∗
2011: Italy vs. Spain ∗ − ∗
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Ignorance from missing data

I Usually, classifiers ignore missing data, assuming them to be MAR

(missing at random).

I MAR: the probability of an observation to be missing does not

depend on its value or on the value of other missing data.

I The MAR assumption cannot be tested on the incomplete data.
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A non-MAR example: a political poll.

I The right-wing supporters (R) sometimes refuse to answer; left-wing

(L) supporters always answer.

Vote Answer

L L

L L

L L

R R

R -

R -

I By ignoring missing data,

P(R) = 1/4: underestimated!
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Conservative treatment of missing data.

I Consider each possible completion of the data.

Answer D1 D2 D3 D4

L L L L L

L L L L L

L L L L L

R R R R R

- L L R R

- L R L R

P(R) 1/6 1/3 1/3 1/2

I P(R) ∈ [1/6, 1/2]; this interval includes the real value.

I Application to BNs: Ramoni and Sebastiani (2000).
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Conservative Inference Rule (Zaffalon, 2005)

I MAR missing data are ignored .

I Non-MAR missing data are filled in all possible ways, both in the

training and in the test data.

I The replacements exponentially grow with the missing data; yet

polynomial time algorithms are available for naive Credal.

[Corani and Zaffalon, 2008, JMLR]
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The conservative treatment of missing data increase

indeterminacy.

I Multiple classes are returned if the most probable class depends:

I on the prior specification or

I on the completion of the non-MAR missing data.

I Declare each feature as MAR or non-MAR depending on domain

knowledge, for a good trade-off between robustness and

informativeness.
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Accuracy of a credal classifier

Interval-valued accuracy would be not informative enough

(too pessimistic/optimistic)

I Single-Accuracy (accuracy if a single class is returned)

I Set-Accuracy (accuracy if multiple classes are returned)

I Determinacy (% number of instances with a single class)

I Average output size (average number of classes returned, if

indeterminate)

I Bayes-I (accuracy of the Bayesian if credal indeterminate)

I Bayes-D = Single-Accuracy



Scheduling Motivations Computations with credal sets IPGMs Hypothesis Testing Learning Experts

Discounted-accuracy

d-acc =
1

N

N∑
i=1

(accurate)i
|Zi |

I accuratei : whether the set of classes returned on instance i contains

the actual class;

I |Zi |: the number of classes returned on the i-th instance.

I For a traditional classification, d-acc equals the 0-1 accuracy.
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Doctor random and doctor vacuous.

I Possible diseases:{A,B}.

I Doctor random: uniformly random diagnosis.

I Doctor vacuous: return both categories.

Disease Random Vacuous

Class. d-acc Class. d-acc

A A 1 {A,B} 0.5

A B 0 {A,B} 0.5

B A 0 {A,B} 0.5

B B 1 {A,B} 0.5

d-acc 0.5 0.5
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Doctor random vs doctor vacuous: the manager viewpoint.

Disease Random Vacuous

Class. d-acc Class. d-acc

A A 1 {A,B} 0.5

A B 0 {A,B} 0.5

B A 0 {A,B} 0.5

B B 1 {A,B} 0.5

d-acc 0.5 0.5

I Assumption: the hospital profits a quantity of money proportional to the

discounted-accuracy.

I After n visits, the profits are:

I doctor vacuous: n/2, with no variance.

I doctor random: expected n/2, with variance n/4.
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Introducing utility

I Expected utility increases with the expected value of the rewards but

decreases with their variance.

I Any risk-adverse manager prefers doctor vacuous over doctor

random.

I And you prefer a vacuous over a random diagnosis!

I Idea: quantify such preference through a utility function (Zaffalon et

al., IJAR 2012).
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How to design the utility function

Actual Predicted Utility

A A 1

A B 0

I Utility corresponds with accuracy for traditional classification

consisting of a single class.
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How to design the utility function

Actual Predicted Utility

A B,C 0

A A,B 0.65-0.80

I A wrong indeterminate classification has utility 0.

I The utility of an accurate but indeterminate classification consisting

of two classes has to be larger than 0.5 ...

I ... otherwise doctor random and doctor vacuous yield the same

utility.
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Learning credal sets from experts

I Modeling ignorance

I Uniform only models indifference

I Vacuous credal set

I Expert qualitative knowledge

I Comparative judgements: win is

more probable than draw,

which more probable than loss

I Qualitative judgements:

adjective ≡ IP statements

P(win)

P(draw)

P(loss)

K0(X )

K0(X )=

{
P(X )

∣∣∣∣∣
∑

x P(x) = 1,

P(x) ≥ 0

}

[Walley, 1991]

From natural language to

linear constraints on probabilities

extremely probable P(x) ≥ 0.98

very high probability P(x) ≥ 0.9

highly probable P(x) ≥ 0.85

very probable P(x) ≥ 0.75

has a very good chance P(x) ≥ 0.65

quite probable P(x) ≥ 0.6

probable P(x) ≥ 0.5

has a good chance 0.4 ≤ P(x) ≤ 0.85

is improbable (unlikely) P(x) ≤ 0.5

is somewhat unlikely P(x) ≤ 0.4

is very unlikely P(x) ≤ 0.25

has little chance P(x) ≤ 0.2

is highly improbable P(x) ≤ 0.15

is has very low probability P(x) ≤ 0.1

is extremely unlikely P(x) ≤ 0.02
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Credal sets induced by probability intervals

I Assessing lower and upper probabilities: [lx , ux ], for each x ∈ Ω

I The consistent credal set is K (X ) :=

P(X )

∣∣∣∣∣∣∣∣
lx ≤ P(x) ≤ ux

P(x) ≥ 0∑
x P(x) = 1


I Avoiding sure loss implies non-emptiness of the credal set∑

x lx ≤ 1 ≤
∑

x ux

I Coherence implies the reachability (bounds are tight)

ux +
∑
x′ 6=x

lx ≤ 1 lx +
∑
x′ 6=x

ux ≥ 1
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Preventing inconsistent judgements

I E.g., two states of X cannot be both “likely”

(as this means P(x) > .65,
∑

x P(x) > 1).

I Reachability constraints∑
x∈ΩX\{x′}

P(x) + P(x ′) ≤ 1, (1)

∑
x∈ΩX\{x′}

P(x) + P(x ′) ≥ 1. (2)

I Judgement specification is sequential, the software displays only

consistent options
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